1
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
2
|
Inhibitory Effect of Lithospermic Acid on the HIV-1 Nucleocapsid Protein. Molecules 2020; 25:molecules25225434. [PMID: 33233563 PMCID: PMC7699738 DOI: 10.3390/molecules25225434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a desirable target in antiretroviral therapy due to its high conservation among HIV-1 strains, and to its multiple and crucial roles in the HIV-1 replication cycle. Natural products represent a valuable source of NC inhibitors, with the catechol group being a privileged scaffold in NC inhibition. By coupling molecular modeling with NMR spectroscopy and fluorescence-based assays, we disclosed lithospermic acid, a catechol derivative extracted from Salvia miltiorrhizza, as a potent and chemically stable non-covalent inhibitor of the NC. Being different from other catechol derivative reported so far, lithospermic acid does not undergo spontaneous oxidation in physiological conditions, thus becoming a profitable starting point for the development of efficient NC inhibitors.
Collapse
|
3
|
Shvadchak V, Zgheib S, Basta B, Humbert N, Langedijk J, Morris MC, Ciaco S, Maskri O, Darlix JL, Mauffret O, Fossé P, Réal E, Mély Y. Rationally Designed Peptides as Efficient Inhibitors of Nucleic Acid Chaperone Activity of HIV-1 Nucleocapsid Protein. Biochemistry 2018; 57:4562-4573. [PMID: 30019894 DOI: 10.1021/acs.biochem.8b00527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to its essential roles in the viral replication cycle and to its highly conserved sequence, the nucleocapsid protein (NCp7) of the human immunodeficiency virus type 1 is a target of choice for inhibiting replication of the virus. Most NCp7 inhibitors identified so far are small molecules. A small number of short peptides also act as NCp7 inhibitors by competing with its nucleic acid (NA) binding and chaperone activities but exhibit antiviral activity only at relatively high concentrations. In this work, in order to obtain more potent NCp7 competitors, we designed a library of longer peptides (10-17 amino acids) whose sequences include most of the NCp7 structural determinants responsible for its specific NA binding and destabilizing activities. Using an in vitro assay, the most active peptide (pE) was found to inhibit the NCp7 destabilizing activity, with a 50% inhibitory concentration in the nanomolar range, by competing with NCp7 for binding to its NA substrates. Formulated with a cell-penetrating peptide (CPP), pE was found to accumulate into HeLa cells, with low cytotoxicity. However, either formulated with a CPP or overexpressed in cells, pE did not show any antiviral activity. In vitro competition experiments revealed that its poor antiviral activity may be partly due to its sequestration by cellular RNAs. The selected peptide pE therefore appears to be a useful tool for investigating NCp7 properties and functions in vitro, but further work will be needed to design pE-derived peptides with antiviral activity.
Collapse
Affiliation(s)
- Volodymyr Shvadchak
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Sarwat Zgheib
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Beata Basta
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | | | - May C Morris
- Institut des biomolécules Max Mousseron, CNRS, UMR 5247 , Université de Montpellier Faculté de Pharmacie , 15 av Charles Flahault 34093 Montpellier , France
| | - Stefano Ciaco
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Ouerdia Maskri
- LBPA, ENS Paris Saclay, CNRS , Université Paris-Saclay , 94235 , Cachan Cedex , France
| | - Jean-Luc Darlix
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Olivier Mauffret
- LBPA, ENS Paris Saclay, CNRS , Université Paris-Saclay , 94235 , Cachan Cedex , France
| | - Philippe Fossé
- LBPA, ENS Paris Saclay, CNRS , Université Paris-Saclay , 94235 , Cachan Cedex , France
| | - Eléonore Réal
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS , Université de Strasbourg , 74 route du Rhin , 67401 Illkirch , France
| |
Collapse
|
4
|
Mori M, Kovalenko L, Malancona S, Saladini F, De Forni D, Pires M, Humbert N, Real E, Botzanowski T, Cianférani S, Giannini A, Dasso Lang MC, Cugia G, Poddesu B, Lori F, Zazzi M, Harper S, Summa V, Mely Y, Botta M. Structure-Based Identification of HIV-1 Nucleocapsid Protein Inhibitors Active against Wild-Type and Drug-Resistant HIV-1 Strains. ACS Chem Biol 2018; 13:253-266. [PMID: 29235845 DOI: 10.1021/acschembio.7b00907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV/AIDS is still one of the leading causes of death worldwide. Current drugs that target the canonical steps of the HIV-1 life cycle are efficient in blocking viral replication but are unable to eradicate HIV-1 from infected patients. Moreover, drug resistance (DR) is often associated with the clinical use of these molecules, thus raising the need for novel drug candidates as well as novel putative drug targets. In this respect, pharmacological inhibition of the highly conserved and multifunctional nucleocapsid protein (NC) of HIV-1 is considered a promising alternative to current drugs, particularly to overcome DR. Here, using a multidisciplinary approach combining in silico screening, fluorescence-based molecular assays, and cellular antiviral assays, we identified nordihydroguaiaretic acid (6), as a novel natural product inhibitor of NC. By using NMR, mass spectrometry, fluorescence spectroscopy, and molecular modeling, 6 was found to act through a dual mechanism of action never highlighted before for NC inhibitors (NCIs). First, the molecule recognizes and binds NC noncovalently, which results in the inhibition of the nucleic acid chaperone properties of NC. In a second step, chemical oxidation of 6 induces a potent chemical inactivation of the protein. Overall, 6 inhibits NC and the replication of wild-type and drug-resistant HIV-1 strains in the low micromolar range with moderate cytotoxicity that makes it a profitable tool compound as well as a good starting point for the development of pharmacologically relevant NCIs.
Collapse
Affiliation(s)
- Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Lesia Kovalenko
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | - Savina Malancona
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Francesco Saladini
- Department
of Medical Biotechnologies, University of Siena, Viale Mario Bracci,
16, 50100 Siena, Italy
| | | | - Manuel Pires
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Nicolas Humbert
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Thomas Botzanowski
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Alessia Giannini
- Department
of Medical Biotechnologies, University of Siena, Viale Mario Bracci,
16, 50100 Siena, Italy
| | - Maria Chiara Dasso Lang
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Cugia
- ViroStatics S.r.l, Viale Umberto
I 46, 07100 Sassari, Italy
| | | | - Franco Lori
- ViroStatics S.r.l, Viale Umberto
I 46, 07100 Sassari, Italy
| | - Maurizio Zazzi
- Department
of Medical Biotechnologies, University of Siena, Viale Mario Bracci,
16, 50100 Siena, Italy
| | - Steven Harper
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Vincenzo Summa
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Yves Mely
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Bldg., Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
5
|
Iraci N, Tabarrini O, Santi C, Sancineto L. NCp7: targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders. Drug Discov Today 2018; 23:687-695. [PMID: 29326078 DOI: 10.1016/j.drudis.2018.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/25/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
Nucleocapsid protein 7 (NCp7) represents a viable target not yet reached by the currently available antiretrovirals. It is a small and highly basic protein, which is essential for multiple stages of the viral replicative cycle, with its structure preserved in all viral strains, including clinical isolates. NCp7 can be inhibited covalently, noncovalently and by shielding the nucleic acid (NA) substrates of its chaperone activity. Although covalent NCp7 inhibitors have already been detailed in the first part of this review series, the focus here is based on noncovalent and NA-binder inhibitors and on the analysis of the NCp7 3D structure to deliver fruitful insights for future drug design strategies.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luca Sancineto
- Department of Heterorganic Chemistry, Centre of Molecular and Macromulecular Studies, Lodz, Poland.
| |
Collapse
|
6
|
Jarillo J, Morín JA, Beltrán-Heredia E, Villaluenga JPG, Ibarra B, Cao FJ. Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers. PLoS One 2017; 12:e0174830. [PMID: 28380044 PMCID: PMC5381885 DOI: 10.1371/journal.pone.0174830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/15/2017] [Indexed: 01/20/2023] Open
Abstract
Ligands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers. These properties can now be measured at the single molecule level using force spectroscopy techniques. Our model performs an effective decomposition of the ligand-polymer system on its covered and uncovered regions, showing that the elastic properties of the ligand-polymer depend explicitly on the ligand coverage of the polymer (i.e., the fraction of the polymer covered by the ligand). The equilibrium coverage that minimizes the free energy of the ligand-polymer system is computed as a function of the applied force. We show how ligands tune the mechanical properties of a polymer, in particular its length and stiffness, in a force dependent manner. In addition, it is shown how ligand binding can be regulated applying mechanical tension on the polymer. Moreover, the binding kinetics study shows that, in the case where the ligand binds and organizes the polymer in different modes, the binding process can present transient shortening or lengthening of the polymer, caused by changes in the relative coverage by the different ligand modes. Our model will be useful to understand ligand-binding regulation of biological processes, such as the metabolism of nucleic acid. In particular, this model allows estimating the coverage fraction and the ligand mode characteristics from the force extension curves of a ligand-polymer system.
Collapse
Affiliation(s)
- Javier Jarillo
- Departamento de Física Atómica, Molecular y Nuclear. Facultad de Ciencias Físicas. Universidad Complutense de Madrid. Pza. de las Ciencias, 1. Madrid. Spain
| | - José A. Morín
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit ‘Unidad de Nanobiotecnología’, Madrid, Spain
| | - Elena Beltrán-Heredia
- Departamento de Física Atómica, Molecular y Nuclear. Facultad de Ciencias Físicas. Universidad Complutense de Madrid. Pza. de las Ciencias, 1. Madrid. Spain
| | - Juan P. G. Villaluenga
- Departamento de Física Aplicada I. Facultad de Ciencias Físicas. Universidad Complutense de Madrid. Pza. de las Ciencias, 1. Madrid. Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit ‘Unidad de Nanobiotecnología’, Madrid, Spain
| | - Francisco J. Cao
- Departamento de Física Atómica, Molecular y Nuclear. Facultad de Ciencias Físicas. Universidad Complutense de Madrid. Pza. de las Ciencias, 1. Madrid. Spain
- * E-mail:
| |
Collapse
|
7
|
Kim MJ, Kim SH, Park JA, Yu KL, Jang SI, Kim BS, Lee ES, You JC. Identification and characterization of a new type of inhibitor against the human immunodeficiency virus type-1 nucleocapsid protein. Retrovirology 2015; 12:90. [PMID: 26545586 PMCID: PMC4636002 DOI: 10.1186/s12977-015-0218-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
Background The human immunodeficiency virus type-1 (HIV-1) nucleocapsid protein (NC) is an essential and multifunctional protein involved in multiple stages of the viral life cycle such as reverse transcription, integration of proviral DNA, and especially genome RNA packaging. For this reason, it has been considered as an attractive target for the development of new anti-HIV drugs. Although a number of inhibitors of NC have been reported thus far, the search for NC-specific and functional inhibitor(s) with a good antiviral activity continues. Results In this study, we report the identification of A1752, a small molecule with inhibitory action against HIV-1 NC, which shows a strong antiviral efficacy and an IC50 around 1 μM. A1752 binds directly to HIV-1 NC, thereby inhibiting specific chaperone functions of NC including Psi RNA dimerization and complementary trans-activation response element (cTAR) DNA destabilization, and it also disrupts the proper Gag processing. Further analysis of the mechanisms of action of A1752 also showed that it generates noninfectious viral particles with defects in uncoating and reverse transcription in the infected cells. Conclusions These results demonstrate that A1752 is a specific and functional inhibitor of NC with a novel mode of action and good antiviral efficacy. Thus, this agent provides a new type of anti-HIV NC inhibitor candidate for further drug development. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Seon Hee Kim
- Avixgen Inc., Seoul, 137-701, Korea. .,National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | | | - Kyung Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | - Soo In Jang
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | | | - Eun Soo Lee
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | - Ji Chang You
- Avixgen Inc., Seoul, 137-701, Korea. .,National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| |
Collapse
|
8
|
Wu H, Wang W, Naiyer N, Fichtenbaum E, Qualley DF, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein. Virus Res 2014; 193:39-51. [PMID: 24915282 PMCID: PMC4252577 DOI: 10.1016/j.virusres.2014.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic residue switches the binding mode of FIV NC from primarily electrostatic binding to more non-electrostatic binding, conferring upon it NA interaction properties comparable to that of HIV-1 NC.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Wei Wang
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Nada Naiyer
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Eric Fichtenbaum
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Dominic F Qualley
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Mark C Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Mori M, Nucci A, Lang MCD, Humbert N, Boudier C, Debaene F, Sanglier-Cianferani S, Catala M, Schult-Dietrich P, Dietrich U, Tisné C, Mely Y, Botta M. Functional and structural characterization of 2-amino-4-phenylthiazole inhibitors of the HIV-1 nucleocapsid protein with antiviral activity. ACS Chem Biol 2014; 9:1950-5. [PMID: 24988251 DOI: 10.1021/cb500316h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleocapsid protein (NC) is a highly conserved protein in diverse HIV-1 subtypes that plays a central role in virus replication, mainly by interacting with conserved nucleic acid sequences. NC is considered a highly profitable drug target to inhibit multiple steps in the HIV-1 life cycle with just one compound, a unique property not shown by any of the other antiretroviral classes. However, most of NC inhibitors developed so far act through an unspecific and potentially toxic mechanism (zinc ejection) and are mainly being investigated as topical microbicides. In an effort to provide specific NC inhibitors that compete for the binding of nucleic acids to NC, here we combined molecular modeling, organic synthesis, biophysical studies, NMR spectroscopy, and antiviral assays to design, synthesize, and characterize an efficient NC inhibitor endowed with antiviral activity in vitro, a desirable property for the development of efficient antiretroviral lead compounds.
Collapse
Affiliation(s)
- Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Alessandro Nucci
- Department
of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maria Chiara Dasso Lang
- Department
of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Nicolas Humbert
- Laboratoire
de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, 74 route du Rhin, F-67401 Illkirch, France
| | - Christian Boudier
- Laboratoire
de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, 74 route du Rhin, F-67401 Illkirch, France
| | - Francois Debaene
- Laboratoire
de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, 74 route du Rhin, F-67401 Illkirch, France
| | - Sarah Sanglier-Cianferani
- Laboratoire
de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, 74 route du Rhin, F-67401 Illkirch, France
| | - Marjorie Catala
- Laboratoire
de Cristallographie et RMN Biologiques, CNRS, Paris Sorbonne Cité, 4 avenue de l’Observatoire, F-75006 Paris, France
| | - Patricia Schult-Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt, Germany
| | - Carine Tisné
- Laboratoire
de Cristallographie et RMN Biologiques, CNRS, Paris Sorbonne Cité, 4 avenue de l’Observatoire, F-75006 Paris, France
| | - Yves Mely
- Laboratoire
de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, 74 route du Rhin, F-67401 Illkirch, France
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Temple University, BioLife Science Bldg.,
Suite 333, 1900 N. 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
10
|
Wu H, Mitra M, Naufer MN, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Differential contribution of basic residues to HIV-1 nucleocapsid protein's nucleic acid chaperone function and retroviral replication. Nucleic Acids Res 2013; 42:2525-37. [PMID: 24293648 PMCID: PMC3936775 DOI: 10.1093/nar/gkt1227] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC’s NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC’s aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ouyang W, Okaine S, McPike MP, Lin Y, Borer PN. Probing the RNA Binding Surface of the HIV-1 Nucleocapsid Protein by Site-Directed Mutagenesis. Biochemistry 2013; 52:3358-68. [DOI: 10.1021/bi400125z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Ouyang
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Stephen Okaine
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Mark P. McPike
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Yong Lin
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Philip N. Borer
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| |
Collapse
|
12
|
Breuer S, Chang MW, Yuan J, Torbett BE. Identification of HIV-1 inhibitors targeting the nucleocapsid protein. J Med Chem 2012; 55:4968-77. [PMID: 22587465 DOI: 10.1021/jm201442t] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HIV-1 nucleocapsid (NC) is a RNA/DNA binding protein encoded within the Gag polyprotein, which is critical for the selection and chaperoning of viral genomic RNA during virion assembly. RNA/DNA binding occurs through a highly conserved zinc-knuckle motif present in NC. Given the necessity of NC-viral RNA/DNA interaction for viral replication, identification of compounds that disrupt the NC-RNA/DNA interaction may have value as an antiviral strategy. To identify small molecules that disrupt NC-viral RNA/DNA binding, a high-throughput fluorescence polarization assay was developed and a library of 14,400 diverse, druglike compounds was screened. Compounds that disrupted NC binding to a fluorescence-labeled DNA tracer were next evaluated by differential scanning fluorimetry to identify compounds that must bind to NC or Gag to impart their effects. Two compounds were identified that inhibited NC-DNA interaction, specifically bound NC with nanomolar affinity, and showed modest anti-HIV-1 activity in ex vivo cell assays.
Collapse
Affiliation(s)
- Sebastian Breuer
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
13
|
Mori M, Schult-Dietrich P, Szafarowicz B, Humbert N, Debaene F, Sanglier-Cianferani S, Dietrich U, Mély Y, Botta M. Use of virtual screening for discovering antiretroviral compounds interacting with the HIV-1 nucleocapsid protein. Virus Res 2012; 169:377-87. [PMID: 22634301 DOI: 10.1016/j.virusres.2012.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/16/2022]
Abstract
The HIV-1 nucleocapsid protein (NC) is considered as an emerging drug target for the therapy of AIDS. Several studies have highlighted the crucial role of NC within the viral replication cycle. However, although NC inhibition has provided in vitro and in vivo antiretroviral activity, drug-candidates which interfere with NC functions are still missing in the therapeutic arsenal against HIV. Based on previous studies, where the dynamic behavior of NC and its ligand binding properties have been investigated by means of computational methods, here we used a virtual screening protocol for discovering novel antiretroviral compounds which interact with NC. The antiretroviral activity of virtual hits was tested in vitro, whereas biophysical studies elucidated the direct interaction of most active compounds with NC(11-55), a peptide corresponding to the zinc finger domain of NC. Two novel antiretroviral small molecules capable of interacting with NC are presented here.
Collapse
Affiliation(s)
- Mattia Mori
- Università di Roma La Sapienza, Dipartimento di Chimica e Tecnologie del Farmaco, piazzale A. Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chaurasiya KR, Geertsema H, Cristofari G, Darlix JL, Williams MC. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3. Nucleic Acids Res 2012; 40:751-60. [PMID: 21917850 PMCID: PMC3258130 DOI: 10.1093/nar/gkr726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 12/18/2022] Open
Abstract
Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC.
Collapse
Affiliation(s)
- Kathy R. Chaurasiya
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Hylkje Geertsema
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Gaël Cristofari
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Jean-Luc Darlix
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA, USA, Unité de Virologie Humaine INSERM 758, IFR 128 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA, USA
| |
Collapse
|
15
|
Flexible nature and specific functions of the HIV-1 nucleocapsid protein. J Mol Biol 2011; 410:565-81. [PMID: 21762801 DOI: 10.1016/j.jmb.2011.03.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/04/2023]
Abstract
One salient feature of reverse transcription in retroviruses, notably in the human immunodeficiency virus type 1, is that it requires the homologous nucleocapsid (NC) protein acting as a chaperoning partner of the genomic RNA template and the reverse transcriptase, from the initiation to the completion of viral DNA synthesis. This short review on the NC protein of human immunodeficiency virus type 1 aims at briefly presenting the flexible nature of NC protein, how it interacts with nucleic acids via its invariant zinc fingers and flanking basic residues, and the possible mechanisms that account for its multiple functions in the early steps of virus replication, notably in the obligatory strand transfer reactions during viral DNA synthesis by the reverse transcriptase enzyme.
Collapse
|
16
|
Quintal SM, dePaula QA, Farrell NP. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 2011; 3:121-39. [PMID: 21253649 DOI: 10.1039/c0mt00070a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc finger reactions with inorganic ions and coordination compounds are as diverse as the zinc fingers themselves. Use of metal ions such as Co(2+) and Cd(2+) has given structural, thermodynamic and kinetic information on zinc fingers and zinc-finger-DNA/RNA interactions. It is a general truism that alteration of the coordination sphere in the finger environment will disrupt the recognition with DNA/RNA and this has implications for mechanism of toxicity and carcinogenesis of metal ions. Structural zinc fingers are susceptible to electrophilic attack and the recognition that the coordination sphere of inorganic compounds may be modulated for control of electrophilic attack on zinc fingers raises the possibility of systematic studies of zinc fingers as drug targets using inorganic chemistry. Some inorganic compounds such as those of As(III) and Au(I) may exert their biological effects through inactivation of zinc fingers and novel approaches to specifically attack the zinc-bound ligands using Co(III)-Schiff bases and Platinum(II)-Nucleobase compounds have been proposed. The genomic importance of zinc fingers suggests that the "coordination chemistry" of zinc fingers themselves is ripe for exploration to design new targets for medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Susana M Quintal
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284-2006, USA
| | | | | |
Collapse
|
17
|
Mori M, Manetti F, Botta M. Predicting the binding mode of known NCp7 inhibitors to facilitate the design of novel modulators. J Chem Inf Model 2010; 51:446-54. [PMID: 21171587 DOI: 10.1021/ci100393m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV-1 nucleocapsid protein (NCp7) is an emerging target for antiretroviral therapy. Five hits have been reported to inhibit the NCp7-viral nucleic acids interaction at micromolar concentrations. We used two computationally refined structures of NCp7 as receptors to propose a reliable binding pose for these compounds, by means of computational methods. Theoretical binding modes are in agreement with available experimental data. Results lay the foundations for a rationale development of more effective NCp7 inhibitors.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento Farmaco Chimico Tecnologico, University of Siena, Siena, Italy
| | | | | |
Collapse
|
18
|
Wu H, Rouzina I, Williams MC. Single-molecule stretching studies of RNA chaperones. RNA Biol 2010; 7:712-23. [PMID: 21045548 PMCID: PMC3073330 DOI: 10.4161/rna.7.6.13776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/25/2023] Open
Abstract
RNA chaperone proteins play significant roles in diverse biological contexts. The most widely studied RNA chaperones are the retroviral nucleocapsid proteins (NC), also referred to as nucleic acid (NA) chaperones. Surprisingly, the biophysical properties of the NC proteins vary significantly for different viruses, and it appears that HIV-1 NC has optimal NA chaperone activity. In this review we discuss the physical nature of the NA chaperone activity of NC. We conclude that the optimal NA chaperone must saturate NA binding, leading to strong NA aggregation and slight destabilization of all NA duplexes. Finally, rapid kinetics of the chaperone protein interaction with NA is another primary component of its NA chaperone activity. We discuss these characteristics of HIV-1 NC and compare them with those of other NA binding proteins and ligands that exhibit only some characteristics of NA chaperone activity, as studied by single molecule DNA stretching.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
19
|
Muriaux D, Darlix JL. Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol 2010; 7:744-53. [PMID: 21157181 DOI: 10.4161/rna.7.6.14065] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a small basic protein generated by the cleavage of the Gag structural polyprotein precusor by the viral protease during virus assembly in the infected cell. HIV-1 NC possesses two copies of a highly conserved CCHC zinc finger (ZnF), flanked by basic residues. HIV-1 NC and more generally retroviral NC proteins are nucleic acid binding proteins possessing potent nucleic acid condensing and chaperoning activities. As such NC protein drives critical structural rearrangements of the genomic RNA, notably RNA dimerization in the course of virus assembly and viral nucleic acid annealing required for genomic RNA replication by the viral reverse transcriptase (RT). Here we review the relationships between the 3D structure of HIV-1 NC, notably the central globular domain encompassing the two zinc fingers and the basic linker and NC functions in the early and late phases of virus replication. One of the salient feature of the NC central globular domain is an hydrophobic plateau which appears to orchestrate the NC functions, such as chaperoning the conversion of the genomic RNA into viral DNA by RT during the early phase, and driving the selection and dimerization of the genomic RNA at the initial stage of viral particle assembly. This ensures a bona fide trafficking of early GagNC-genomic RNA complexes to the plasma membrane of the infected cell and ultimately virion formation and budding.
Collapse
|
20
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R Chaurasiya
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
21
|
Athavale SS, Ouyang W, McPike MP, Hudson BS, Borer PN. Effects of the nature and concentration of salt on the interaction of the HIV-1 nucleocapsid protein with SL3 RNA. Biochemistry 2010; 49:3525-33. [PMID: 20359247 DOI: 10.1021/bi901279e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mature nucleocapsid protein of HIV-1, NCp7, and the NC domains in gag precursors are attractive targets for anti-AIDS drug discovery. The stability of the 1:1 complex of NCp7 with a 20mer mimic of stem-loop 3 RNA (SL3, also called psi-RNA, in the packaging domain of genomic RNA) is strongly affected by changes in ionic strength. NC domains recognize and specifically package genomic HIV-1 RNA, while electrostatic attractions and high concentrations of protein and RNA drive NCp7 to completely coat the RNA in the mature virion. The specific interactions of NCp7 binding to loop bases of SL3 produce 1:1 complexes in solutions that have a NaCl concentration of >or=0.2 M, while the electrostatic interactions can dominate at <or=0.15 M NaCl, leading to complexes that have a mainly 1:2 RNA:protein ratio. Persistent, nonequilibrium mixtures of 1:1 and protein-excess complexes can exist at these lower salt concentrations, where the distribution of complexes depends on the order of addition of RNA and protein. Adding salt causes rapid rearrangement of metastable multiprotein complexes to a 1:1 ratio. The stability of complexes is also affected by the nature of the added salt, with 0.018 M MgCl(2) and added 0.200 M NaCl producing the same K(d) (21 +/- 2 nM); acetate ion stabilizes the 1:1 complex by a factor of more than 2 compared to the same concentration of chloride ion. Maintaining a salt concentration of 0.2 M NaCl or 18 mM MgCl(2) is sufficient for experiments to distinguish drug candidates that disrupt the specific SL3-NCp7 interactions in the 1:1 complex.
Collapse
Affiliation(s)
- Shreyas S Athavale
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | |
Collapse
|
22
|
Goldschmidt V, Miller Jenkins LM, de Rocquigny H, Darlix JL, Mély Y. The nucleocapsid protein of HIV-1 as a promising therapeutic target for antiviral drugs. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The nucleocapsid protein (NCp7) is a major HIV-1 structural protein that plays key roles in viral replication, mainly through its conserved zinc fingers that direct specific interactions with the viral nucleic acids. Owing to its high degree of conservation and critical functions, NCp7 represents a target of choice for drugs that can potentially complement HAART, thus possibly impairing the circulation of drug-resistant HIV-1 strains. Zinc ejectors showing potent antiretroviral activity were developed, but early generations suffered from limited selectively and significant toxicity. Compounds with improved selectivity have been developed and are being explored as topical microbicide candidates. Several classes of molecules inhibiting the interaction of NCp7 with the viral nucleic acids have also been developed. Although small molecules would be more suited for drug development, most molecules selected by screening showed limited antiretroviral activity. Peptides and RNA aptamers appear to be more promising, but the mechanism of their antiretroviral activity remains elusive. Substantial and more concerted efforts are needed to further develop anti-HIV drugs targeting NCp7 and bring them to the clinic.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine INSERM 758, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| |
Collapse
|
23
|
Badasyan AV, Giacometti A, Mamasakhlisov YS, Morozov VF, Benight AS. Microscopic formulation of the Zimm-Bragg model for the helix-coil transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:021921. [PMID: 20365609 DOI: 10.1103/physreve.81.021921] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 10/15/2009] [Indexed: 05/29/2023]
Abstract
A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil transition in biopolymers. This model is shown to provide the same thermophysical properties of the original Zimm-Bragg model and it allows a very convenient framework to compute statistical quantities. Physical origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with an external field. However, the dependence on temperature of the reduced external field turns out to differ from the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite the exact mapping connecting them. We discuss how this point has been frequently overlooked in the recent literature.
Collapse
Affiliation(s)
- A V Badasyan
- Dipartimento di Chimica Fisica, Universita Ca' Foscari di Venezia, Calle Larga S. Marta DD2137, I-30123 Venezia, Italy.
| | | | | | | | | |
Collapse
|
24
|
Waybright TJ, Britt JR, McCloud TG. Overcoming Problems of Compound Storage in DMSO: Solvent and Process Alternatives. ACTA ACUST UNITED AC 2009; 14:708-15. [DOI: 10.1177/1087057109335670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The common practice of preparing storage libraries of compounds in 100% DMSO solution well in advance of bioassay brings with it difficulties that affect the accuracy of the data obtained. This publication presents a series of studies done on a subset of compounds that are difficult to bioassay because they precipitate from DMSO solution. These compounds are members of a frequently used, diverse compound library of the sort commonly used in the high-throughput screening (HTS) environment. Experiments were performed to determine the concentration of drug in solution above the precipitate, observe the time course and effect of various mixtures of solvents upon precipitation, measure the viscosity of cosolvents to determine compatibility with HTS, determine water absorption rates for various solvent combinations, and investigate resolubilization techniques to ensure proper drug solution for HTS. Recommendations are made on how to best maximize the probability that problem compounds will remain in solution, be accurately transferred during assay plate production, and, as a result, be accurately bioassayed at the specified molar concentration. ( Journal of Biomolecular Screening 2009:708-715)
Collapse
Affiliation(s)
- Timothy J. Waybright
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., Frederick, Maryland
| | - John R. Britt
- Natural Products Support Group, Applied/Developmental Research Support Program, SAIC-Frederick, Inc., Frederick, Maryland
| | - Thomas G. McCloud
- Natural Products Support Group, Applied/Developmental Research Support Program, SAIC-Frederick, Inc., Frederick, Maryland,
| |
Collapse
|
25
|
Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein. Biochimie 2009; 91:916-23. [PMID: 19401213 DOI: 10.1016/j.biochi.2009.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/15/2009] [Indexed: 11/22/2022]
Abstract
Due to its highly conserved zinc fingers and its nucleic acid chaperone properties which are critical for HIV-1 replication, the nucleocapsid protein (NC) constitutes a major target in AIDS therapy. Different families of molecules targeting NC zinc fingers and/or inhibiting the binding of NC with its target nucleic acids have been developed. However, their limited specificity and their cellular toxicity prompted us to develop a screening assay to target molecules able to inhibit NC chaperone properties, and more specifically the initial NC-promoted destabilization of the nucleic acid secondary structure. Since this destabilization is critically dependent on the properly folded fingers, the developed assay is thought to be highly specific. The assay was based on the use of cTAR DNA, a stem-loop sequence complementary to the transactivation response element, doubly labelled at its 5' and 3' ends by a rhodamine 6G fluorophore and a fluorescence quencher, respectively. Addition of NC(12-55), a peptide corresponding to the zinc finger domain of NC, to this doubly-labelled cTAR, led to a partial melting of the cTAR stem, which increases the distance between the two labels and thus, restores the rhodamine 6G fluorescence. Thus, positive hits were detected through the decrease of rhodamine 6G fluorescence. An "in-house" chemical library of 4800 molecules was screened and five compounds with IC(50) values in the micromolar range have been selected. The hits were shown by mass spectrometry and fluorescence anisotropy titration to prevent binding of NC(12-55) to cTAR through direct interaction with the NC folded fingers, but without promoting zinc ejection. These non-zinc ejecting NC binders are a new series of anti-NC molecules that could be used to rationally design molecules with potential anti-viral activities.
Collapse
|
26
|
Retroviral nucleocapsid proteins display nonequivalent levels of nucleic acid chaperone activity. J Virol 2008; 82:10129-42. [PMID: 18684831 DOI: 10.1128/jvi.01169-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is a nucleic acid chaperone that facilitates the remodeling of nucleic acids during various steps of the viral life cycle. Two main features of NC's chaperone activity are its abilities to aggregate and to destabilize nucleic acids. These functions are associated with NC's highly basic character and with its zinc finger domains, respectively. While the chaperone activity of HIV-1 NC has been extensively studied, less is known about the chaperone activities of other retroviral NCs. In this work, complementary experimental approaches were used to characterize and compare the chaperone activities of NC proteins from four different retroviruses: HIV-1, Moloney murine leukemia virus (MLV), Rous sarcoma virus (RSV), and human T-cell lymphotropic virus type 1 (HTLV-1). The different NCs exhibited significant differences in their overall chaperone activities, as demonstrated by gel shift annealing assays, decreasing in the order HIV-1 approximately RSV > MLV >> HTLV-1. In addition, whereas HIV-1, RSV, and MLV NCs are effective aggregating agents, HTLV-1 NC, which exhibits poor overall chaperone activity, is unable to aggregate nucleic acids. Measurements of equilibrium binding to single- and double-stranded oligonucleotides suggested that all four NC proteins have moderate duplex destabilization capabilities. Single-molecule DNA-stretching studies revealed striking differences in the kinetics of nucleic acid dissociation between the NC proteins, showing excellent correlation between nucleic acid dissociation kinetics and overall chaperone activity.
Collapse
|
27
|
Demicheli C, Frézard F, Mangrum JB, Farrell NP. Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs. Chem Commun (Camb) 2008:4828-30. [DOI: 10.1039/b809186b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
McCauley MJ, Williams MC. Mechanisms of DNA binding determined in optical tweezers experiments. Biopolymers 2007; 85:154-68. [PMID: 17080421 DOI: 10.1002/bip.20622] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The last decade has seen rapid development in single molecule manipulation of RNA and DNA. Measuring the response force for a particular manipulation has allowed the free energies of various nucleic acid structures and configurations to be determined. Optical tweezers represent a class of single molecule experiments that allows the energies and structural dynamics of DNA to be probed up to and beyond the transition from the double helix to its melted single strands. These experiments are capable of high force resolution over a wide dynamic range. Additionally, these investigations may be compared with results obtained when the nucleic acids are in the presence of proteins or other binding ligands. These ligands may bind into the major or minor groove of the double helix, intercalate between bases or associate with an already melted single strand of DNA. By varying solution conditions and the pulling dynamics, energetic and dynamic information may be deduced about the mechanisms of binding to nucleic acids, providing insight into the function of proteins and the utility of drug treatments.
Collapse
Affiliation(s)
- Micah J McCauley
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | |
Collapse
|