1
|
Cell-free prion protein conversion assays in screening for anti-prion drug candidates. Curr Opin Pharmacol 2018; 44:1-7. [PMID: 30412823 DOI: 10.1016/j.coph.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 11/22/2022]
Abstract
The search for medications to treat prion diseases has lasted more than 30 years but no clinically validated treatments for prion diseases of humans or livestock have been realized. A primary strategy has been to identify molecules that can inhibit the formation of pathological forms of prion protein, for example, protease-resistant forms called PrPres. Such inhibitors can prolong the lives of experimental animals inoculated peripherally with prions, but the practical therapeutic efficacy of known inhibitors against ongoing brain infections has so far been limited by toxicity, insufficient bioavailability to the CNS, and/or strain specificities. Thus, the search continues for clinically applicable inhibitors of PrPres accumulation. Here we highlight key cell-free assays that are useful for the initial screening and mechanistic characterization of such compounds and are relatively high throughput, rapid, and cost-effective. These include cell-free conversions, protein misfolding cyclic amplification (PMCA), real time quaking-induced conversion (RT-QuIC), and fluorescence correlation-based competitive binding assays.
Collapse
|
2
|
Li L, Zhu Y, Zhou S, An X, Zhang Y, Bai Q, He YX, Liu H, Yao X. Experimental and Theoretical Insights into the Inhibition Mechanism of Prion Fibrillation by Resveratrol and its Derivatives. ACS Chem Neurosci 2017; 8:2698-2707. [PMID: 28817252 DOI: 10.1021/acschemneuro.7b00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Resveratrol and its derivatives have been shown to display beneficial effects to neurodegenerative diseases. However, the molecular mechanism of resveratrol and its derivatives on prion conformational conversion is poorly understood. In this work, the interaction mechanism between prion and resveratrol as well as its derivatives was investigated using steady-state fluorescence quenching, Thioflavin T binding assay, Western blotting, and molecular dynamics simulation. Protein fluorescence quenching method and Thioflavin T assay revealed that resveratrol and its derivatives could interact with prion and interrupt prion fibril formation. Molecular dynamics simulation results indicated that resveratrol can stabilize the PrP127-147 peptide mainly through π-π stacking interactions between resveratrol and Tyr128. The hydrogen bonds interactions between resveratrol and the PrP127-147 peptide could further reduce the flexibility and the propensity to aggregate. The results of this study not only can provide useful information about the interaction mechanism between resveratrol and prion, but also can provide useful clues for further design of new inhibitors inhibiting prion aggregation.
Collapse
Affiliation(s)
- Lanlan Li
- State
Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yongchang Zhu
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shuangyan Zhou
- State
Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoli An
- State
Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yan Zhang
- State
Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qifeng Bai
- State
Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Xing He
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huanxiang Liu
- School
of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaojun Yao
- State
Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, P. R. China
| |
Collapse
|
3
|
Charco JM, Eraña H, Venegas V, García-Martínez S, López-Moreno R, González-Miranda E, Pérez-Castro MÁ, Castilla J. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens 2017; 6:E67. [PMID: 29240682 PMCID: PMC5750591 DOI: 10.3390/pathogens6040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
The misfolding of the cellular prion protein (PrPC) into the disease-associated isoform (PrPSc) and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs). Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrPSc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrPSc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.
Collapse
Affiliation(s)
- Jorge M. Charco
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Vanessa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Sandra García-Martínez
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Rafael López-Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Ezequiel González-Miranda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Miguel Ángel Pérez-Castro
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
4
|
Identification of novel fluorescent probes preventing PrP Sc replication in prion diseases. Eur J Med Chem 2017; 127:859-873. [DOI: 10.1016/j.ejmech.2016.10.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
|
5
|
Ferreira NC, Marques IA, Conceição WA, Macedo B, Machado CS, Mascarello A, Chiaradia-Delatorre LD, Yunes RA, Nunes RJ, Hughson AG, Raymond LD, Pascutti PG, Caughey B, Cordeiro Y. Anti-prion activity of a panel of aromatic chemical compounds: in vitro and in silico approaches. PLoS One 2014; 9:e84531. [PMID: 24400098 PMCID: PMC3882252 DOI: 10.1371/journal.pone.0084531] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022] Open
Abstract
The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrP(C)) into the scrapie form (PrP(Sc)) is the hallmark of TSEs. Once formed, PrP(Sc) aggregates and catalyzes PrP(C) misfolding into new PrP(Sc) molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrP(Sc) (ScN2a) for their ability to inhibit PK-resistant PrP (PrP(Res)) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrP(Res) in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrP(Res) from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP(109-149)). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrP(Res) in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are attractive candidates for prion disease therapy.
Collapse
Affiliation(s)
- Natalia C. Ferreira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Icaro A. Marques
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wesley A. Conceição
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Macedo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice S. Machado
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Mascarello
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Rosendo Augusto Yunes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ricardo José Nunes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Lynne D. Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Pedro G. Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Phthalocyanine tetrasulfonates bind to multiple sites on natively-folded prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:826-32. [DOI: 10.1016/j.bbapap.2012.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/23/2012] [Accepted: 03/20/2012] [Indexed: 11/22/2022]
|
7
|
Nicoll AJ, Trevitt CR, Tattum MH, Risse E, Quarterman E, Ibarra AA, Wright C, Jackson GS, Sessions RB, Farrow M, Waltho JP, Clarke AR, Collinge J. Pharmacological chaperone for the structured domain of human prion protein. Proc Natl Acad Sci U S A 2010; 107:17610-5. [PMID: 20876144 PMCID: PMC2955083 DOI: 10.1073/pnas.1009062107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In prion diseases, the misfolded protein aggregates are derived from cellular prion protein (PrP(C)). Numerous ligands have been reported to bind to human PrP(C) (huPrP), but none to the structured region with the affinity required for a pharmacological chaperone. Using equilibrium dialysis, we screened molecules previously suggested to interact with PrP to discriminate between those which did not interact with PrP, behaved as nonspecific polyionic aggregates or formed a genuine interaction. Those that bind could potentially act as pharmacological chaperones. Here we report that a cationic tetrapyrrole [Fe(III)-TMPyP], which displays potent antiprion activity, binds to the structured region of huPrP. Using a battery of biophysical techniques, we demonstrate that Fe(III)-TMPyP forms a 11 complex via the structured C terminus of huPrP with a K(d) of 4.5 ± 2 μM, which is in the range of its IC(50) for curing prion-infected cells of 1.6 ± 0.4 μM and the concentration required to inhibit protein-misfolding cyclic amplification. Therefore, this molecule tests the hypothesis that stabilization of huPrP(C), as a principle, could be used in the treatment of human prion disease. The identification of a binding site with a defined 3D structure opens up the possibility of designing small molecules that stabilize huPrP and prevent its conversion into the disease-associated form.
Collapse
Affiliation(s)
| | - Clare R. Trevitt
- Medical Research Council Prion Unit, University College of London Institute of Neurology, Queen Square, London WCN1 3BG, United Kingdom
| | - M. Howard Tattum
- Medical Research Council Prion Unit, University College of London Institute of Neurology, Queen Square, London WCN1 3BG, United Kingdom
| | | | | | - Amaurys Avila Ibarra
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | | | - Graham S. Jackson
- Medical Research Council Prion Unit, University College of London Institute of Neurology, Queen Square, London WCN1 3BG, United Kingdom
| | - Richard B. Sessions
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | | | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Anthony R. Clarke
- Medical Research Council Prion Unit, University College of London Institute of Neurology, Queen Square, London WCN1 3BG, United Kingdom
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | - John Collinge
- Department of Neurodegenerative Disease and
- Medical Research Council Prion Unit, University College of London Institute of Neurology, Queen Square, London WCN1 3BG, United Kingdom
| |
Collapse
|
8
|
Abstract
The transmissible spongiform encephalopathies are rapidly progressive and invariably fatal neurodegenerative diseases for which there are no proven efficacious treatments. Many approaches have been undertaken to find ways to prevent, halt, or reverse these prion diseases, with limited success to date. However, as both our understanding of pathogenesis and our ability to detect early disease increases, so do our potential therapeutic targets and our chances of finding effective drugs. There is increasing pressure to find effective decontaminants for blood supplies, as variant Creutzfeldt Jakob Disease (vCJD) has been shown to be transmissible by blood, and to find non-toxic preventative therapies, with ongoing cases of Bovine Spongiform Encephalopathy (BSE) and the spread of Chronic Wasting Disease (CWD). Within the realm of chemotherapeutic approaches, much research has focussed on blocking the conversion of the normal form of prion protein (PrP(c)) to its abnormal counterpart (PrP(res)). Structurally, these chemotherapeutic agents are often polyanionic or polycyclic and may directly bind PrP(c) or PrP(res), or act by redistributing, sequestering, or down-regulating PrP(c), thus preventing its conversion. There are also some polycationic compounds which proport to enhance the clearance of PrP(res). Other targets include accessory molecules such as the laminin receptor precursor which influences conversion, or cell signalling molecules which may be required for pathogenesis. Of recent interest are the possible neuroprotective effects of some drugs. Importantly, there is evidence that combining compounds may provide synergistic responses. This review provides an update on current testing methods, therapeutic targets, and promising candidates for chemical-based therapy.
Collapse
Affiliation(s)
- Valerie L Sim
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | |
Collapse
|
9
|
Lee KS, Raymond LD, Schoen B, Raymond GJ, Kett L, Moore RA, Johnson LM, Taubner L, Speare JO, Onwubiko HA, Baron GS, Caughey WS, Caughey B. Hemin Interactions and Alterations of the Subcellular Localization of Prion Protein. J Biol Chem 2007; 282:36525-33. [DOI: 10.1074/jbc.m705620200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|