1
|
Jiang F, Qian C, Esker AR, Roman M. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin. J Phys Chem B 2017; 121:9607-9620. [DOI: 10.1021/acs.jpcb.7b07716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Jiang
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chen Qian
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alan R. Esker
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Macromolecules
Innovation Institute,‡Department of Chemistry, and §Department of
Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Utsuno K, Kono H, Tanaka E, Jouna N, Kojima Y, Uludağ H. Low Molecular Weight Branched PEI Binding to Linear DNA. Chem Pharm Bull (Tokyo) 2017; 64:1484-1491. [PMID: 27725501 DOI: 10.1248/cpb.c16-00454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyethylenimine (PEI) is one of the most versatile non-viral vectors used in gene therapy, especially for delivering plasmid DNA to human cells. However, a good understanding of PEI binding to DNA, the fundamental basis for the functioning of PEI as a vector, has been missing in the literature. In this study, PEI (branched, 600 Da) binding to DNA was examined by isothermal titration calorimetry (ITC), quartz crystal microbalance (QCM) and a complementary set of analysis tools. We demonstrated that a separation between the binding heat and the condensation heat is needed and that the excluded site model should be used for PEI binding stage in the ITC analysis. The equilibrium constant for PEI binding to DNA was determined to be 2.5×105 M-1 from the ITC analysis, and as 2.3×105 M-1 from the QCM analysis. Additionally, we suggested that the 600 Da branched PEI binds to the major groove of DNA and the rearrangement of PEI on DNA may be difficult to occur because of the small dissociation rate. The binding analysis presented here can be employed to improve our understanding of the functioning of PEI and PEI-like non-viral vectors.
Collapse
Affiliation(s)
- Kuniharu Utsuno
- Department of Science & Engineering for Materials, National Institute of Technology, Tomakomai College
| | | | | | | | | | | |
Collapse
|
3
|
Esnault C, Jaillet J, Delorme N, Bouchet N, Renault S, Douziech-Eyrolles L, Pilard JF, Augé-Gouillou C. Kinetic analysis of the interaction of Mos1 transposase with its inverted terminal repeats reveals new insight into the protein-DNA complex assembly. Chembiochem 2015; 16:140-8. [PMID: 25487538 DOI: 10.1002/cbic.201402466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/08/2022]
Abstract
Transposases are specific DNA-binding proteins that promote the mobility of discrete DNA segments. We used a combination of physicochemical approaches to describe the association of MOS1 (an eukaryotic transposase) with its specific target DNA, an event corresponding to the first steps of the transposition cycle. Because the kinetic constants of the reaction are still unknown, we aimed to determine them by using quartz crystal microbalance on two sources of recombinant MOS1: one produced in insect cells and the other produced in bacteria. The prokaryotic-expressed MOS1 showed no cooperativity and displayed a Kd of about 300 nM. In contrast, the eukaryotic-expressed MOS1 generated a cooperative system, with a lower Kd (∼ 2 nm). The origins of these differences were investigated by IR spectroscopy and AFM imaging. Both support the conclusion that prokaryotic- and eukaryotic-expressed MOS1 are not similarly folded, thereby resulting in differences in the early steps of transposition.
Collapse
Affiliation(s)
- Charles Esnault
- Groupe Instabilité Génétique et Transposases, EA 6306, Fédération GICC, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 Avenue Monge, 37200 Tours (France)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Esnault C, Renodon-Cornière A, Takahashi M, Casse N, Delorme N, Louarn G, Fleury F, Pilard JF, Chénais B. Assessment of DNA binding to human Rad51 protein by using quartz crystal microbalance and atomic force microscopy: effects of ADP and BRC4-28 peptide inhibitor. Chemphyschem 2014; 15:3753-60. [PMID: 25208912 DOI: 10.1002/cphc.201402451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 11/06/2022]
Abstract
The interaction of human Rad51 protein (HsRad51) with single-stranded deoxyribonucleic acid (ssDNA) was investigated by using quartz crystal microbalance (QCM) monitoring and atomic force microscopy (AFM) visualization. Gold surfaces for QCM and AFM were modified by electrografting of the in situ generated aryldiazonium salt from the sulfanilic acid to obtain the organic layer Au-ArSO3 H. The Au-ArSO3 H layer was activated by using a solution of PCl5 in CH2 Cl2 to give a Au-ArSO2 Cl layer. The modified surface was then used to immobilize long ssDNA molecules. The results obtained showed that the presence of adenosine diphosphate promotes the protein autoassociation rather than nucleation around DNA. In addition, when the BRC4-28 peptide inhibitor was used, both QCM and AFM confirmed the inhibitory effect of BRC4-28 toward HsRad51 autoassociation. Altogether these results show the suitability of this modified surface to investigate the kinetics and structure of DNA-protein interactions and for the screening of inhibitors.
Collapse
Affiliation(s)
- Charles Esnault
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans Cedex 9 (France)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yazawa K, Furusawa H, Okahata Y. Real-time monitoring of intermediates reveals the reaction pathway in the thiol-disulfide exchange between disulfide bond formation protein A (DsbA) and B (DsbB) on a membrane-immobilized quartz crystal microbalance (QCM) system. J Biol Chem 2013; 288:35969-81. [PMID: 24145032 PMCID: PMC3861646 DOI: 10.1074/jbc.m113.519876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/18/2013] [Indexed: 11/06/2022] Open
Abstract
Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone.
Collapse
Affiliation(s)
- Kenjiro Yazawa
- From the Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, Yamagata 992-8510, Japan and Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Furusawa
- From the Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, Yamagata 992-8510, Japan and Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yoshio Okahata
- From the Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, Yamagata 992-8510, Japan and Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Takahashi S, Furusawa H, Ueda T, Okahata Y. Translation enhancer improves the ribosome liberation from translation initiation. J Am Chem Soc 2013; 135:13096-106. [PMID: 23927491 DOI: 10.1021/ja405967h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For translation initiation in bacteria, the Shine-Dalgarno (SD) and anti-SD sequence of the 30S subunit play key roles for specific interactions between ribosomes and mRNAs to determine the exact position of the translation initiation region. However, ribosomes also must dissociate from the translation initiation region to slide toward the downstream sequence during mRNA translation. Translation enhancers upstream of the SD sequences of mRNAs, which likely contribute to a direct interaction with ribosome protein S1, enhance the yields of protein biosynthesis. Nevertheless, the mechanism of the effect of translation enhancers to initiate the translation is still unknown. In this paper, we investigated the effects of the SD and enhancer sequences on the binding kinetics of the 30S ribosomal subunits to mRNAs and their translation efficiencies. mRNAs with both the SD and translation enhancers promoted the amount of protein synthesis but destabilized the interaction between the 30S subunit and mRNA by increasing the dissociation rate constant (koff) of the 30S subunit. Based on a model for kinetic parameters, a 16-fold translation efficiency could be achieved by introducing a tandem repeat of adenine sequences (A20) between the SD and translation enhancer sequences. Considering the results of this study, translation enhancers with an SD sequence regulate ribosomal liberation from translation initiation to determine the translation efficiency of the downstream coding region.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53, 4259 Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
7
|
Takahashi S, Isobe H, Ueda T, Okahata Y. Direct monitoring of initiation factor dynamics through formation of 30S and 70S translation-initiation complexes on a quartz crystal microbalance. Chemistry 2013; 19:6807-16. [PMID: 23536416 DOI: 10.1002/chem.201203502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/14/2013] [Indexed: 11/06/2022]
Abstract
Translation initiation is a dynamic and complicated process requiring the building a 70S initiation complex (70S-IC) composed of a ribosome, mRNA, and an initiator tRNA. During the formation of the 70S-IC, initiation factors (IFs: IF1, IF2, and IF3) interact with a ribosome to form a 30S initiation complex (30S-IC) and a 70S-IC. Although some spectroscopic analyses have been performed, the mechanism of binding and dissociation of IFs remains unclear. Here, we employed a 27 MHz quartz crystal microbalance (QCM) to evaluate the process of bacterial IC formation in translation initiation by following frequency changes (mass changes). IFs (IF1, IF2, and IF3), N-terminally fused to biotin carboxyl carrier protein (bio-BCCP), were immobilized on a Neutravidin-covered QCM plate. By using bio-BCCP-IF2 immobilized to the QCM, three steps of the formation of ribosomal initiation complex could be sequentially observed as simple mass changes in real time: binding of a 30S complex to the immobilized IF2, a recruitment of 50S to the 30S-IC, and formation of the 70S-IC. The kinetic parameters implied that the release of IF2 from the 70S-IC could be the rate-limiting step in translation initiation. The IF3-immobilized QCM revealed that the affinity of IF3 for the 30S complex decreased upon the addition of mRNA and fMet-tRNA(fMet) but did not lead to complete dissociation from the 30S-IC. These results suggest that IF3 binds and stays bound to ICs, and its interaction mode is altered during the formation of 30S-IC and 70S-IC and is finally induced to dissociate from ICs by 50S binding. This methodology demonstrated here is applicable to investigate the role of IFs in translation initiation driven by other pathways.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
8
|
Yazawa K, Furusawa H, Okahata Y. Mechanism of Thiol–Disulfide Exchange Reactions between DsbA and DsbB over a Wide pH Range. CHEM LETT 2013. [DOI: 10.1246/cl.2013.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenjiro Yazawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology
| | - Hiroyuki Furusawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology
| | - Yoshio Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology
| |
Collapse
|
9
|
Yamada M, Takahashi S, Okahata Y, Doi Y, Numata K. Monitoring and kinetic analysis of the molecular interactions by which a repressor protein, PhaR, binds to target DNAs and poly[(R)-3-hydroxybutyrate]. AMB Express 2013; 3:6. [PMID: 23351303 PMCID: PMC3570403 DOI: 10.1186/2191-0855-3-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 01/22/2013] [Indexed: 11/10/2022] Open
Abstract
The repressor protein PhaR, which is a component of poly[(R)-3-hydroxybutyrate] granules, functions as a repressor of the gene expression of the phasin PhaP and of PhaR itself. We used a quartz crystal microbalance to investigate the binding behavior by which PhaR in Ralstonia eutropha H16 targets DNAs and amorphous poly[(R)-3-hydroxybutyrate] thin films. Binding rate constants, dissociation rate constants, and dissociation constants of the binding of PhaR to DNA and to amorphous poly[(R)-3-hydroxybutyrate] suggested that PhaR bind to both in a similar manner. On the basis of the binding rate constant values, we proposed that the phaP gene would be derepressed in harmony with the ratio of the concentration of the target DNA to the concentration of amorphous poly[(R)-3-hydroxybutyrate] at the start of poly[(R)-3-hydroxybutyrate] synthesis in R. eutropha H16.
Collapse
|
10
|
Kamihira-Ishijima M, Nakazawa H, Kira A, Naito A, Nakayama T. Inhibitory Mechanism of Pancreatic Amyloid Fibril Formation: Formation of the Complex between Tea Catechins and the Fragment of Residues 22–27. Biochemistry 2012. [DOI: 10.1021/bi3012274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Miya Kamihira-Ishijima
- Laboratory of Molecular Food
Engineering and Global COE Program, School of Food and Nutritional
Sciences, University of Shizuoka, 52-1
Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromi Nakazawa
- Laboratory of Molecular Food
Engineering and Global COE Program, School of Food and Nutritional
Sciences, University of Shizuoka, 52-1
Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Kira
- Research and Development Division, ULVAC, Inc., 2500 Hagizono, Chigasaki, Kanagawa 253-8543,
Japan
| | - Akira Naito
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku,
Yokohama 240-8501, Japan
| | - Tsutomu Nakayama
- Laboratory of Molecular Food
Engineering and Global COE Program, School of Food and Nutritional
Sciences, University of Shizuoka, 52-1
Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
11
|
Furusawa H, Uemura K, Yoshimine H, Okahata Y. In situ monitoring of a trace intermediate during DNA phosphorylation by T4 polynucleotide kinase for transient kinetic studies. Analyst 2012; 137:1334-7. [DOI: 10.1039/c2an16273c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Cheng CI, Chang YP, Chu YH. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem Soc Rev 2012; 41:1947-71. [DOI: 10.1039/c1cs15168a] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Real-time monitoring of a stepwise transcription reaction on a quartz-crystal microbalance. Anal Biochem 2011; 421:732-41. [PMID: 22182728 DOI: 10.1016/j.ab.2011.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 11/23/2022]
Abstract
We monitored real-time DNA transcription by T7 RNAP using a 27-MHz DNA-immobilized quartz-crystal microbalance (QCM) in buffer solution to investigate the stepwise reaction of transcription. We designed a template double-stranded DNA that consisted of a T7 promoter, a stall position (15 bp downstream from the promoter), and a 73-bp transcription region. Based on the frequency (mass) changes of the template-immobilized QCM in response to the addition of T7 RNAP and monomers of NTP, we obtained the kinetic parameters of each step of the T7 RNAP reactions: the enzyme-binding rate (k(on)) to and the dissociation rate (k(off)) from the promoter, the proceeding rate (k(for)) from the promoter to the forward stall position, the polymerization rate (k(cat)) of RNA along DNA, and the release rate (k(r)) from the end of the template DNA. We found that k(cat) (120 s⁻¹) was extremely large compared with k(off) (0.014 s⁻¹), k(for) (0.062 s⁻¹), and k(r) (0.014 s⁻¹), revealing that the rate-limiting steps of T7 RNAP involve the binding to the promoter, the movement to the stall position, and the release from DNA. These kinetic parameters were compared with values for other DNA-binding enzymes.
Collapse
|
14
|
Becker B, Cooper MA. A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J Mol Recognit 2011; 24:754-87. [DOI: 10.1002/jmr.1117] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Palma M, Abramson J, Gorodetsky A, Nuckolls C, Sheetz MP, Wind SJ, Hone J. Controlled confinement of DNA at the nanoscale: nanofabrication and surface bio-functionalization. Methods Mol Biol 2011; 749:169-85. [PMID: 21674372 PMCID: PMC3381934 DOI: 10.1007/978-1-61779-142-0_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Nanopatterned arrays of biomolecules are a powerful tool to address fundamental issues in many areas of biology. DNA nanoarrays, in particular, are of interest in the study of DNA-protein interactions and for biodiagnostic investigations. In this context, achieving a highly specific nanoscale assembly of oligonucleotides at surfaces is critical. In this chapter, we describe a method to control the immobilization of DNA on nanopatterned surfaces; the nanofabrication and the bio-functionalization involved in the process will be discussed.
Collapse
Affiliation(s)
- Matteo Palma
- Department of Mechanical Engineering & Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mori T, Ohtsuka T, Okahata Y. Kinetic analyses of bindings of Shiga-like toxin to clustered and dispersed Gb3 glyco-arrays on a quartz-crystal microbalance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14118-14125. [PMID: 20666463 DOI: 10.1021/la102260k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
One-, two-, four-, and eight-branched globotriaosyl saccharides (Gb(3): Gal-alpha1,4-Gal-beta1,4-Glc), whose reducing ends were biotinylated, were prepared (1Gb(3)-bio, 2Gb(3)-bio, 4Gb(3)-bio, and 8Gb(3)-bio, respectively). They are dispersively immobilized as a glyco-array in the matrix of biotinylated maltotriose (Glc(3)-bio) on a streptavidin-covered 27 MHz quartz-crystal microbalance (QCM). The binding kinetics of the verotoxin B subunit (VTB) to various branched Gb(3)-bio ligands in the Glc(3)-bio matrix could be obtained from frequency decreases (mass increases) of the QCM. VTB can recognize the Gb(3) unit but not the Glc(3) unit, where VTB is a pentamer having five binding sites for one Gb(3) unit per each B subunit (having a total of 15 binding sites for Gb(3)). By changing the Gb(3) multivalency, the Gb(3) packing density, and the Gb(3) cluster size in the Glc(3) matrix, association constants (K(a)), maximum amounts bound (Delta m(max)), and binding and dissociation rate constants (k(on) and k(off)) were obtained. When 15 sites of VTB were recognized by 16 Gb(3) units, K(a) was 100 times larger than that when 15 sites of VTB were recognized by only 2 Gb(3) units, with a 6-fold-larger k(on) and a 25-fold-smaller k(off). When the Gb(3) multivalency was changed by covering with two 1Gb(3)-bio, 2Gb(3)-bio, 4Gb(3)-bio, or 8Gb(3)-bio ligands on two pockets of one streptavidin, the K(a) values increased with increasing branch number from one to eight. When the Gb(3) cluster size was changed from eight 1Gb(3)-bio units to one 8Gb(3)-bio unit in the matrix, the K(a) values increased but the Delta m(max) values decreased with increasing cluster size from eight 1Gb(3)-bio units to one 8Gb(3)-bio unit. This is the first example of systematically obtaining all kinetic parameters of sugar-binding proteins to sugars on a glyco-array by changing the sugar multivalency, the sugar packing density, and the sugar cluster size in the matrix.
Collapse
Affiliation(s)
- Toshiaki Mori
- Japan Science and Technology Agency-Precursory Research for Embryonic Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan.
| | | | | |
Collapse
|
17
|
Mori T, Toyoda M, Ohtsuka T, Okahata Y. Kinetic analyses for bindings of concanavalin A to dispersed and condensed mannose surfaces on a quartz crystal microbalance. Anal Biochem 2009; 395:211-6. [DOI: 10.1016/j.ab.2009.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 08/13/2009] [Accepted: 08/19/2009] [Indexed: 11/25/2022]
|
18
|
Takahashi S, Iida M, Furusawa H, Shimizu Y, Ueda T, Okahata Y. Real-time monitoring of cell-free translation on a quartz-crystal microbalance. J Am Chem Soc 2009; 131:9326-32. [PMID: 19518055 DOI: 10.1021/ja9019947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficiency of protein synthesis is often regulated post-transcriptionally by sequences within the mRNA. To investigate the reactions of protein translation, we established a system that allowed real-time monitoring of protein synthesis using a cell-free translation mixture and a 27 MHz quartz-crystal microbalance (QCM). Using an mRNA that encoded a fusion polypeptide comprising the streptavidin-binding peptide (SBP) tag, a portion of Protein D as a spacer, and the SecM arrest sequence, we could follow the binding of the SBP tag, while it was displayed on the 70S ribosome, to a streptavidin-modified QCM over time. Thus, we could follow a single turnover of protein synthesis as a change in mass. This approach allowed us to evaluate the effects of different antibiotics and mRNA sequences on the different steps of translation. From the results of this study, we have determined that both the formation of the initiation complex from the 70S ribosome, mRNA, and fMet-tRNA(fMet) and the accommodation of the second aminoacyl-tRNA to the initiation complex are rate-limiting steps in protein synthesis.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Furusawa H, Ozeki T, Morita M, Okahata Y. Added Mass Effect on Immobilizations of Proteins on a 27 MHz Quartz Crystal Microbalance in Aqueous Solution. Anal Chem 2009; 81:2268-73. [DOI: 10.1021/ac802412t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroyuki Furusawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology and SENTAN, JST, 4259 Nagatsuda, Midori-ku, Yokohama 226-8501, Japan, and Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomomitsu Ozeki
- Department of Biomolecular Engineering, Tokyo Institute of Technology and SENTAN, JST, 4259 Nagatsuda, Midori-ku, Yokohama 226-8501, Japan, and Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Mizuki Morita
- Department of Biomolecular Engineering, Tokyo Institute of Technology and SENTAN, JST, 4259 Nagatsuda, Midori-ku, Yokohama 226-8501, Japan, and Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoshio Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology and SENTAN, JST, 4259 Nagatsuda, Midori-ku, Yokohama 226-8501, Japan, and Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
20
|
Furusawa H, Komatsu M, Okahata Y. In Situ Monitoring of Conformational Changes of and Peptide Bindings to Calmodulin on a 27 MHz Quartz-Crystal Microbalance. Anal Chem 2009; 81:1841-7. [DOI: 10.1021/ac8022229] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroyuki Furusawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Mayu Komatsu
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshio Okahata
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
21
|
Takahashi S, Matsuno H, Furusawa H, Okahata Y. Direct monitoring of allosteric recognition of type IIE restriction endonuclease EcoRII. J Biol Chem 2008; 283:15023-30. [PMID: 18367450 PMCID: PMC3258892 DOI: 10.1074/jbc.m800334200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
EcoRII is a homodimer with two domains consisting of a DNA-binding N terminus and a catalytic C terminus and recognizes two specific sequences on DNA. It shows a relatively complicated cleavage reaction in bulk solution. After binding to either recognition site, EcoRII cleaves the other recognition site of the same DNA (cis-binding) strand and/or the recognition site of the other DNA (trans-binding) strand. Although it is difficult to separate these two reactions in bulk solution, we could simply obtain the binding and cleavage kinetics of only the cis-binding by following the frequency (mass) changes of a DNA-immobilized quartz-crystal microbalance (QCM) responding to the addition of EcoRII in aqueous solution. We obtained the maximum binding amounts (Deltam(max)), the dissociation constants (K(d)), the binding and dissociation rate constants (k(on) and k(off)), and the catalytic cleavage reaction rate constants (k(cat)) for wild-type EcoRII, the N-terminal-truncated form (EcoRII N-domain), and the mutant derivatives in its C-terminal domain (K263A and R330A). It was determined from the kinetic analyses that the N-domain, which covers the catalytic C-domain in the absence of DNA, preferentially binds to the one DNA recognition site while transforming EcoRII into an active form allosterically, and then the secondary C-domain binds to and cleaves the other recognition site of the DNA strand.
Collapse
Affiliation(s)
| | | | | | - Yoshio Okahata
- Frontier Research Center, Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53 4259 Nagatsuda, Midori-ku, Yokohama, Japan
| |
Collapse
|
22
|
Interaction of tea catechins with lipid bilayers investigated by a quartz-crystal microbalance analysis. Biosci Biotechnol Biochem 2008; 72:1372-5. [PMID: 18460795 DOI: 10.1271/bbb.70786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The quartz-crystal microbalance (QCM) technique was applied to investigate the interaction of tea catechins with lipid bilayers. The association constants obtained from the frequency changes of QCM revealed that (-)epicatechin gallate and (-)epigallocatechin gallate interacted with 1,2-dimyristoyl-sn-glycero-3-phosphocholine ca. 1000 times more strongly than (-)epicatechin and (-)epigallocatechin. The results exhibited good correlation with the strength of biological activity.
Collapse
|
23
|
Turon X, Rojas OJ, Deinhammer RS. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:3880-7. [PMID: 18324851 DOI: 10.1021/la7032753] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interactions between films of cellulose and cellulase enzymes were monitored using a quartz crystal microbalance (QCM). Real-time measurements of the coupled contributions of enzyme binding and hydrolytic reactions were fitted to a kinetic model that described closely significant cellulase activities. The proposed model combines simple Boltzmann sigmoidal and 1 - exp expressions. The obtained kinetics parameters were proven to be useful to discriminate the effects of incubation variables and also to perform enzyme screening. Furthermore, it is proposed that the energy dissipation of a film subject to enzymatic hydrolysis brings to light its structural changes. Overall, it is demonstrated that the variations registered in QCM frequency and dissipation of the film are indicative of mass and morphological transformations due to enzyme activities; these include binding phenomena, progressive degradation of the cellulose film, existence of residual, recalcitrant cellulose fragments, and the occurrence of other less apparent changes throughout the course of incubation.
Collapse
Affiliation(s)
- Xavier Turon
- North Carolina State University, Forest Biomaterials Laboratory, College of Natural Resources, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
24
|
Furusawa H, Takano H, Okahata Y. Transient kinetic studies of protein hydrolyses by endo- and exo-proteases on a 27 MHz quartz-crystal microbalance. Org Biomol Chem 2008; 6:727-31. [DOI: 10.1039/b717171d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Rawle RJ, Johal MS, Selassie CRD. A real-time QCM-D approach to monitoring mammalian DNA damage using DNA adsorbed to a polyelectrolyte surface. Biomacromolecules 2007; 9:9-12. [PMID: 18076139 DOI: 10.1021/bm701062f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have successfully demonstrated that the quartz crystal microbalance with dissipation monitoring (QCM-D) can be used to monitor real-time damage to genomic mammalian DNA adsorbed to a polyelectrolyte surface. To reveal the capabilities of this technique, we exposed DNA surfaces to quercetin, an agent that has been implicated in causing DNA strand breaks in a Cu(II)-dependent fashion in vitro. We show that the QCM-D frequency and dissipation patterns that result from exposure of the DNA surfaces to quercetin-Cu(II) are consistent with the induction of DNA strand scission. We use QCM-D to furthermore demonstrate that this process is dependent on Cu(II) and that the DNA damage induced by quercetin can still be detected if Cu(II) is in situ with the DNA surface and not in solution phase.
Collapse
Affiliation(s)
- Robert J Rawle
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711-6338, USA
| | | | | |
Collapse
|