1
|
Chmayssem A, Petit L, Verplanck N, Mourier V, Vignoud S, Engin Vrana N, Mailley P. Characterization of the Impact of Classical Cell‐culture Media on the Response of Electrochemical Sensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayman Chmayssem
- Univ. Grenoble Alpes CEA, LETI, DTBS F-38000 Grenoble France
| | - Lauriane Petit
- Inserm UMR 1121 1 rue Eugène Boeckel 67000 Strasbourg France
| | | | | | | | | | - Pascal Mailley
- Univ. Grenoble Alpes CEA, LETI, DTBS F-38000 Grenoble France
| |
Collapse
|
2
|
Chmayssem A, Verplanck N, Tanase CE, Costa G, Monsalve-Grijalba K, Amigues S, Alias M, Gougis M, Mourier V, Vignoud S, Ghaemmaghami AM, Mailley P. Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites. Talanta 2021; 229:122275. [PMID: 33838777 DOI: 10.1016/j.talanta.2021.122275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored for the real-time monitoring of cell metabolites derived from cell cultures. Most attractive features of our developed electrochemical (bio)sensing platform are its easy manufacturing process, that enables seamless scale-up, modular and versatile approach, and low cost. In addition, the developed platform allows a multiparametric analysis instead of single-analyte analysis. Here we provide an overview of the sensors-based analysis of four main factors that can indicate a possible cell deterioration problem during cell-culture: pH, hydrogen peroxide, nitric oxide/nitrite and lactate. Herein, we are proposing a sensors platform based on thick-film coupled to microfluidic technology that can be integrated into any microfluidic system using Luer-lock connectors. This platform allows obtaining an accurate analysis of the secreting stress metabolites during cell/tissues culture.
Collapse
Affiliation(s)
- Ayman Chmayssem
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| | - Nicolas Verplanck
- Univ. Grenoble Alpes, CEA, LETI, DTBS, LSMB, 38000, Grenoble, France
| | - Constantin Edi Tanase
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Guillaume Costa
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | | | - Simon Amigues
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Mélanie Alias
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Véronique Mourier
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Séverine Vignoud
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Amir M Ghaemmaghami
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| |
Collapse
|
3
|
Pereira SAP, Mota FAR, Çay I, Passos MLC, Araujo ARTS, Saraiva MLMFS. Automatic fluorometric lactate determination in human plasma samples. NEW J CHEM 2020. [DOI: 10.1039/c9nj04831f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new automatic, robust, economic and reliable methodology to determine the lactate levels in human plasma in a fast way and using low volume blood samples.
Collapse
Affiliation(s)
- Sarah A. P. Pereira
- REQUIMTE
- Departamento de Ciências Químicas
- Faculdade de Farmácia
- Universidade do Porto
- Rua Jorge Viterbo Ferreira
| | - Fátima A. R. Mota
- REQUIMTE
- Departamento de Ciências Químicas
- Faculdade de Farmácia
- Universidade do Porto
- Rua Jorge Viterbo Ferreira
| | - Ipek Çay
- REQUIMTE
- Departamento de Ciências Químicas
- Faculdade de Farmácia
- Universidade do Porto
- Rua Jorge Viterbo Ferreira
| | - Marieta L. C. Passos
- REQUIMTE
- Departamento de Ciências Químicas
- Faculdade de Farmácia
- Universidade do Porto
- Rua Jorge Viterbo Ferreira
| | - André R. T. S. Araujo
- REQUIMTE
- Departamento de Ciências Químicas
- Faculdade de Farmácia
- Universidade do Porto
- Rua Jorge Viterbo Ferreira
| | - M. Lúcia M. F. S. Saraiva
- REQUIMTE
- Departamento de Ciências Químicas
- Faculdade de Farmácia
- Universidade do Porto
- Rua Jorge Viterbo Ferreira
| |
Collapse
|
4
|
Chu Z, Liu Y, Jin W. Recent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications. Biosens Bioelectron 2017; 96:17-25. [DOI: 10.1016/j.bios.2017.04.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023]
|
5
|
Pundir CS, Narwal V, Batra B. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosens Bioelectron 2016; 86:777-790. [DOI: 10.1016/j.bios.2016.07.076] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/16/2016] [Accepted: 07/22/2016] [Indexed: 01/24/2023]
|
6
|
Radulescu MC, Bucur MP, Alecu A, Bucur B, Radu GL. Electrochemical Determination of Hydrogen Peroxide Using a Prussian Blue-Copper Modified Platinum Microelectrode. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1131706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Kong B, Selomulya C, Zheng G, Zhao D. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem Soc Rev 2015. [PMID: 26214277 DOI: 10.1039/c5cs00397k] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.
Collapse
Affiliation(s)
- Biao Kong
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
8
|
Loaiza OA, Lamas-Ardisana PJ, Añorga L, Jubete E, Ruiz V, Borghei M, Cabañero G, Grande HJ. Graphitized carbon nanofiber–Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders. Bioelectrochemistry 2015; 101:58-65. [DOI: 10.1016/j.bioelechem.2014.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/01/2014] [Accepted: 07/06/2014] [Indexed: 11/15/2022]
|
9
|
Gonçales VR, Gaitán MH, Bragatto ADO, Soler-Illia GJ, Baraldo LM, Córdoba de Torresi SI. Correlation between pore size and reactivity of macro/mesoporous iron and copper hexacyanoferrates for H2O2 electrocatalysis. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Rama EC, Biscay J, González García MB, Reviejo AJ, Pingarrón Carrazón JM, Costa García A. Comparative study of different alcohol sensors based on Screen-Printed Carbon Electrodes. Anal Chim Acta 2012; 728:69-76. [DOI: 10.1016/j.aca.2012.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/01/2011] [Accepted: 03/22/2012] [Indexed: 11/26/2022]
|
11
|
Bori Z, Csiffáry G, Virág D, Tóth-Markus M, Kiss A, Adányi N. Determination of L-Lactic Acid Content in Foods by Enzyme-Based Amperometric Bioreactor. ELECTROANAL 2011. [DOI: 10.1002/elan.201100409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Abstract
There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Biochemistry Department, Science College, and Pharmacology Department, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Layla M Faddah
- Biochemistry Department, Science College, and Pharmacology Department, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Teng Y, Chen C, Zhou C, Zhao H, Lan M. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system. Sci China Chem 2010. [DOI: 10.1007/s11426-010-4038-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Romero MR, Ahumada F, Garay F, Baruzzi AM. Amperometric Biosensor for Direct Blood Lactate Detection. Anal Chem 2010; 82:5568-72. [DOI: 10.1021/ac1004426] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcelo Ricardo Romero
- INFIQC, Departimento de Físico Química, Faculdad de Ciencias Químicas, UNC, Pab. Argentina, Ala 1, 2° piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Facundo Ahumada
- INFIQC, Departimento de Físico Química, Faculdad de Ciencias Químicas, UNC, Pab. Argentina, Ala 1, 2° piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fernando Garay
- INFIQC, Departimento de Físico Química, Faculdad de Ciencias Químicas, UNC, Pab. Argentina, Ala 1, 2° piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ana M. Baruzzi
- INFIQC, Departimento de Físico Química, Faculdad de Ciencias Químicas, UNC, Pab. Argentina, Ala 1, 2° piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|
15
|
A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 2008; 384:159-65. [PMID: 18851940 DOI: 10.1016/j.ab.2008.09.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/13/2008] [Accepted: 09/19/2008] [Indexed: 11/23/2022]
Abstract
An amperometric lactate biosensor was developed based on a conducting polymer, poly-5,2'-5',2''-terthiophene-3'-carboxylic acid (pTTCA), and multiwall carbon nanotube (MWNT) composite on a gold electrode. Lactate dehydrogenase (LDH) and the oxidized form of nicotinamide adenine dinucleotide (NAD(+)) were subsequently immobilized onto the pTTCA/MWNT composite film. The modified electrode was characterized by quartz crystal microbalance (QCM), scanning electron microscopy (SEM), and electrochemical experiments. The detection signal was amplified by the pTTCA/MWNT assembly onto which a sufficient amount of enzyme was immobilized and stabilized by the covalent bond formation between the amine groups of enzyme and the carboxylic acid groups of the pTTCA/MWNT film. Experimental parameters affecting the sensor responses, such as applied potential, pH, and temperature, were assessed and optimized. Analytical performances and dynamic ranges of the sensor were determined, and the results showed that the sensitivity, stability, and reproducibility of the sensor improved significantly using pTTCA/MWNT composite film. The calibration plot was linear (r(2)=0.9995) over the range of 5 to 90 microM. The sensitivity was approximately 0.0106 microA/microM, with a detection limit of 1 microM, based on a signal/noise ratio of 3. The applicability of the sensor for the analysis of l-lactate concentration in commercial milk and human serum samples was demonstrated successfully.
Collapse
|
16
|
Determination of Parathion and Carbaryl Pesticides in Water and Food Samples Using a Self Assembled Monolayer /Acetylcholinesterase Electrochemical Biosensor. SENSORS 2008; 8:4600-4610. [PMID: 27873775 PMCID: PMC3705461 DOI: 10.3390/s8084600] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/15/2008] [Accepted: 07/29/2008] [Indexed: 12/01/2022]
Abstract
An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions (pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at Ep = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.
Collapse
|
17
|
Ferreira SLC, Pereira PADP, Nóbrega JA, Fatibello-Filho O, Feres MA, Reis BF, Bruns RE, Aquino Neto FRD. A Glimpse of Recent Developments in Brazilian Analytical Chemistry. ANAL LETT 2008. [DOI: 10.1080/00032710802136289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|