1
|
Xu G, Li P, Xue Z, Qi Y, Li X, Zhu D, Ma H, Kong L. RecA inhibitor epicatechin prolongs the development of fluoroquinolone resistance in Pasteurella multocida. Int J Biol Macromol 2024; 255:128026. [PMID: 37952805 DOI: 10.1016/j.ijbiomac.2023.128026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Pasteurella multocida (P. multocida), a primary pathogen of bovine respiratory diseases, has become resistant to many antibiotics, including fluoroquinolones and aminoglycosides. A large number of studies have proved that SOS reaction plays a crucial role in the development of antibiotic resistance. We have shown that the deletion of SOS response-related genes (recA, recO) can delay the development of fluoroquinolone resistance in P. multocida, therefore, it can be used as potential targets for antibiotic resistance inhibitors. In this study, we have used molecular docking to screen RecA protein inhibitors with high throughput screening, and found that epicatechin as an inhibitor significantly inhibited the formation of fluoroquinolone resistance in P. multocida, while in vitro coadministration of epicatechin with and without ciprofloxacin improved the efficacy of the antimicrobial agent. In conclusion, our results indicate that epicatechin is an efficient RecA inhibitor, implying that combining it with ciprofloxacin is a highly promising method for treating P. multocida resistant to fluoroquinolones.
Collapse
Affiliation(s)
- Guanyi Xu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China.
| | - Penghui Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiyang Xue
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Yu Qi
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Xuesong Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Daomi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China.
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Jaramillo AVC, Cory MB, Li A, Kohli RM, Wuest WM. Exploration of inhibitors of the bacterial LexA repressor-protease. Bioorg Med Chem Lett 2022; 65:128702. [PMID: 35351585 DOI: 10.1016/j.bmcl.2022.128702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Resistant and tolerant bacterial infections lead to billions in healthcare costs and cause hundreds of thousands of deaths each year. The bulk of current antibiotic research efforts focus on molecules which, although novel, are not immune from acquired resistance and seldomly affect tolerant populations. The bacterial SOS response has been implicated in several resistance and tolerance mechanisms, making it an attractive antibiotic target. Using small molecule inhibitors targeting a key step in the deployment of the SOS response, our approach focused on preventing the deployment of mechanisms such as biofilm formation, horizontal gene transfer, and error-prone DNA repair. Herein we report the synthesis and testing of analogs of a triazole-containing tricyclic inhibitor of LexA proteolysis, the key event in the SOS response. Our results hint that our inhibitor's may function by adopting a β-hairpin conformation, reminiscent of the native cleavage loop of LexA.
Collapse
Affiliation(s)
| | - Michael B Cory
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Reitz D, Chan YL, Bishop DK. How strand exchange protein function benefits from ATP hydrolysis. Curr Opin Genet Dev 2021; 71:120-128. [PMID: 34343922 PMCID: PMC8671154 DOI: 10.1016/j.gde.2021.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Members of the RecA family of strand exchange proteins carry out the central reaction in homologous recombination. These proteins are DNA-dependent ATPases, although their ATPase activity is not required for the key functions of homology search and strand exchange. We review the literature on the role of the intrinsic ATPase activity of strand exchange proteins. We also discuss the role of ATP-hydrolysis-dependent motor proteins that serve as strand exchange accessory factors, with an emphasis on the eukaryotic Rad54 family of double strand DNA-specific translocases. The energy from ATP allows recombination events to progress from the strand exchange stage to subsequent stages. ATP hydrolysis also functions to corrects DNA binding errors, including particularly detrimental binding to double strand DNA.
Collapse
Affiliation(s)
- Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Yuen-Ling Chan
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, IL, USA.
| |
Collapse
|
4
|
Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors. Future Med Chem 2021; 13:143-155. [PMID: 33410707 DOI: 10.4155/fmc-2020-0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.
Collapse
|
5
|
Ojha D, Patil KN. Molecular and functional characterization of the Listeria monocytogenes RecA protein: Insights into the homologous recombination process. Int J Biochem Cell Biol 2019; 119:105642. [PMID: 31698090 DOI: 10.1016/j.biocel.2019.105642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
The recombinases present in the all kingdoms in nature play a crucial role in DNA metabolism processes such as replication, repair, recombination and transcription. However, till date, the role of RecA in the deadly foodborne pathogen Listeria monocytogenes remains unknown. In this study, the authors show that L. monocytogenes expresses recA more than two-fold in vivo upon exposure to the DNA damaging agents, methyl methanesulfonate and ultraviolet radiation. The purified L. monocytogenes RecA protein show robust binding to single stranded DNA. The RecA is capable of forming displacement loop and hydrolyzes ATP, whereas the mutant LmRecAK70A fails to hydrolyze ATP, showing conserved walker A and B motifs. Interestingly, L. monocytogenes RecA and LmRecAK70A perform the DNA strand transfer activity, which is the hallmark feature of RecA protein with an oligonucleotide-based substrate. Notably, L. monocytogenes RecA readily cleaves L. monocytogenes LexA, the SOS regulon and protects the presynaptic filament from the exonuclease I activity. Altogether, this study provides the first detailed characterization of L. monocytogenes RecA and presents important insights into the process of homologous recombination in the gram-positive foodborne bacteria L. monocytogenes.
Collapse
Affiliation(s)
- Debika Ojha
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Proctor R. Respiration and Small Colony Variants of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0069-2019. [PMID: 31198131 PMCID: PMC11257146 DOI: 10.1128/microbiolspec.gpp3-0069-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory mutants, both naturally occurring and genetically constructed, have taught us about the importance of metabolism in influencing virulence factor production, persistence, and antibiotic resistance. As we learn more about small colony variants, we find that Staphylococcus aureus has many pathways to produce small colony variants, although the respiratory variants are the best described clinically and in the laboratory.
Collapse
Affiliation(s)
- Richard Proctor
- Department of Medical Microbiology and Immunology University of Wisconsin School of Medicine and Public Health Madison, WI 53705
| |
Collapse
|
7
|
Mo CY, Culyba MJ, Selwood T, Kubiak JM, Hostetler ZM, Jurewicz AJ, Keller PM, Pope AJ, Quinn A, Schneck J, Widdowson KL, Kohli RM. Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership. ACS Infect Dis 2018; 4:349-359. [PMID: 29275629 DOI: 10.1021/acsinfecdis.7b00122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.
Collapse
Affiliation(s)
- Charlie Y. Mo
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Matthew J. Culyba
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Trevor Selwood
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey M. Kubiak
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Zachary M. Hostetler
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Anthony J. Jurewicz
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Paul M. Keller
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Andrew J. Pope
- Discovery Partnerships with Academia, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Amy Quinn
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jessica Schneck
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Katherine L. Widdowson
- Discovery Partnerships with Academia, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rahul M. Kohli
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. PLoS One 2017; 12:e0183327. [PMID: 28837642 PMCID: PMC5570288 DOI: 10.1371/journal.pone.0183327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Collapse
Affiliation(s)
- John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ian S. Cloudsdale
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - Frank Guarnieri
- PAKA Pulmonary Pharmaceuticals, Acton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Bellio P, Di Pietro L, Mancini A, Piovano M, Nicoletti M, Brisdelli F, Tondi D, Cendron L, Franceschini N, Amicosante G, Perilli M, Celenza G. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 29:11-18. [PMID: 28515022 DOI: 10.1016/j.phymed.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. PURPOSE Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. METHODS The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. RESULTS Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC50) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. CONCLUSION In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity.
Collapse
Affiliation(s)
- Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Letizia Di Pietro
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Alisia Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Marisa Piovano
- Department of Chemistry, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaíso, 6, Chile
| | - Marcello Nicoletti
- Department of Environmental Biology, University Sapienza, P.le A. Moro, 00185, Rome, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena e Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy.
| |
Collapse
|
10
|
Abstract
DNA metabolism embodies a number of biochemical pathways, which include targets of clinically used antibiotics as well as those that are only being explored as potential targets for inhibitory compounds. We give an overview of representative cell-based and enzymatic assays suitable for high-throughput-driven search for novel DNA metabolism inhibitors of established and novel DNA metabolism targets in bacteria. The protocol for a colorimetric coupled primase-inorganic pyrophosphatase assay developed by our group is described in detail.
Collapse
|
11
|
Abstract
![]()
Bacteria
possess a remarkable ability to rapidly adapt and evolve
in response to antibiotics. Acquired antibiotic resistance can arise
by multiple mechanisms but commonly involves altering the target site
of the drug, enzymatically inactivating the drug, or preventing the
drug from accessing its target. These mechanisms involve new genetic
changes in the pathogen leading to heritable resistance. This recognition
underscores the importance of understanding how such
genetic changes can arise. Here, we review recent advances in our
understanding of the processes that contribute to the evolution of
antibiotic resistance, with a particular focus on hypermutation mediated
by the SOS pathway and horizontal gene transfer. We explore the molecular
mechanisms involved in acquired resistance and discuss their viability
as potential targets. We propose that additional studies into these
adaptive mechanisms not only can provide insights into evolution but
also can offer a strategy for potentiating our current antibiotic
arsenal.
Collapse
|
12
|
Peterson EJR, Janzen WP, Kireev D, Singleton SF. High-throughput screening for RecA inhibitors using a transcreener adenosine 5'-O-diphosphate assay. Assay Drug Dev Technol 2011; 10:260-8. [PMID: 22192312 DOI: 10.1089/adt.2011.0409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The activities of the bacterial RecA protein are involved in the de novo development and transmission of antibiotic resistance genes, thus allowing bacteria to overcome the metabolic stress induced by antibacterial agents. RecA is ubiquitous and highly conserved among bacteria, but has only distant homologs in human cells. Together, this evidence points to RecA as a novel and attractive antibacterial drug target. All known RecA functions require the formation of a complex formed by multiple adenosine 5'-O-triphosphate (ATP)-bound RecA monomers on single-stranded DNA. In this complex, RecA hydrolyzes ATP. Although several methods for assessing RecA's ATPase activity have been reported, these assay conditions included relatively high concentrations of enzyme and ATP and thereby restricted the RecA conformational state. Herein, we describe the validation of commercial reagents (Transcreener(®) adenosine 5'-O-diphosphate [ADP](2) fluorescence polarization assay) for the high-throughput measurement of RecA's ATPase activity with lower concentrations of ATP and RecA. Under optimized conditions, ADP detection by the Transcreener reagent provided robust and reproducible activity data (Z'=0.92). Using the Transcreener assay, we screened 113,477 small molecules against purified RecA protein. In total, 177 small molecules were identified as confirmed hits, of which 79 were characterized by IC(50) values ≤ 10 μM and 35 were active in bioassays with live bacteria. This set of compounds comprises previously unidentified scaffolds for RecA inhibition and represents tractable hit structures for efforts aimed at tuning RecA inhibitory activity in both biochemical and bacteriological assays.
Collapse
Affiliation(s)
- Eliza J R Peterson
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, USA
| | | | | | | |
Collapse
|
13
|
Sexton JZ, Wigle TJ, He Q, Hughes MA, Smith GR, Singleton SF, Williams AL, Yeh LA. Novel Inhibitors of E. coli RecA ATPase Activity. CURRENT CHEMICAL GENOMICS 2010; 4:34-42. [PMID: 20648224 PMCID: PMC2905775 DOI: 10.2174/1875397301004010034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/07/2009] [Accepted: 12/12/2009] [Indexed: 11/22/2022]
Abstract
The bacterial RecA protein has been implicated as a bacterial drug target not as an antimicrobial target, but as an adjuvant target with the potential to suppress the mechanism by which bacteria gain drug resistance. In order to identify small molecules that inhibit RecA/ssDNA nucleoprotein filament formation, we have adapted the phosphomolybdate-blue ATPase assay for high throughput screening to determine RecA ATPase activity against a library of 33,600 compounds, which is a selected representation of diverse structure of 350,000. Four distinct chemotypes were represented among the 40 validated hits. SAR and further chemical synthesis is underway to optimize this set of inhibitors to be used as antimicrobial adjuvant agents.
Collapse
Affiliation(s)
- Jonathan Z Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, 27707, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wigle TJ, Sexton JZ, Gromova AV, Hadimani MB, Hughes MA, Smith GR, Yeh LA, Singleton SF. Inhibitors of RecA activity discovered by high-throughput screening: cell-permeable small molecules attenuate the SOS response in Escherichia coli. ACTA ACUST UNITED AC 2009; 14:1092-101. [PMID: 19675313 DOI: 10.1177/1087057109342126] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phenomenon of antibiotic resistance has created a need for the development of novel antibiotic classes with nonclassical cellular targets. Unfortunately, target-based drug discovery against proteins considered essential for in vitro bacterial viability has yielded few new therapeutic classes of antibiotics. Targeting the large proportion of genes considered nonessential that have yet to be explored by high-throughput screening, for example, RecA, can complement these efforts. Recent evidence suggests that RecA-controlled processes are responsible for tolerance to antibiotic chemotherapy and are involved in pathways that ultimately lead to full-fledged antibiotic resistance. Therefore inhibitors of RecA may serve as therapeutic adjuvants in combination chemotherapy of bacterial infectious diseases. Toward the goal of validating RecA as a novel target in the chemotherapy of bacterial infections, the authors have screened 35,780 small molecules against RecA. In total, 80 small molecules were identified as primary hits and could be clustered in 6 distinct chemotype clades. The most potent class of hits was further examined, and 1 member compound was found to inhibit RecA-mediated strand exchange and prevent ciprofloxacin-induced SOS expression in Escherichia coli. This compound represents the first small molecule demonstrating an ability to inhibit the bacterial SOS response in live bacterial cell cultures.
Collapse
Affiliation(s)
- Tim J Wigle
- UNC Eshelman School of Pharmacy, Division of Medicinal Chemistry and Natural Products, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lockett MR, Phillips MF, Jarecki JL, Peelen D, Smith LM. A tetrafluorophenyl activated ester self-assembled monolayer for the immobilization of amine-modified oligonucleotides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:69-75. [PMID: 18047381 PMCID: PMC2533856 DOI: 10.1021/la702493u] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A tetrafluorophenyl (TFP) ester-terminated self-assembled monolayer (SAM) for the fabrication of DNA arrays on gold surfaces is described. Activated ester SAMs are desirable for biomolecule array fabrication because they readily react with amine-containing molecules to form a stable amide linkage. N-Hydroxysuccinimide (NHS) ester SAMs are commonly used for this purpose but are subject to a competing hydrolysis side reaction, limiting their effectiveness under basic conditions. TFP was evaluated here as an alternative activated ester leaving group with a potentially greater stability under basic conditions. It is shown that TFP SAMs are much more stable to basic pH than their NHS analogs and are also more hydrophobic, which is an advantage in the fabrication of high-density spotted arrays. DNA arrays prepared on TFP SAMs at pH 10 have a 5-fold greater surface density of DNA molecules, reduced fluorescence background, and smaller spot radii than those prepared on NHS SAM analogs.
Collapse
Affiliation(s)
- Matthew R. Lockett
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Margaret F. Phillips
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Jessica L. Jarecki
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Dora Peelen
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|