1
|
Denoulet M, Brulé M, Anquez F, Vincent A, Schnipper J, Adriaenssens E, Toillon RA, Le Bourhis X, Lagadec C. ABSP: an automated R tool to efficiently analyze region-specific CpG methylation from bisulfite sequencing PCR. Bioinformatics 2023; 39:6984714. [PMID: 36629453 PMCID: PMC9846423 DOI: 10.1093/bioinformatics/btad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
MOTIVATION Nowadays, epigenetic gene regulations are studied in each part of the biology, from embryonic development to diseases such as cancers and neurodegenerative disorders. Currently, to quantify and compare CpG methylation levels of a specific region of interest, the most accessible technique is the bisulfite sequencing PCR (BSP). However, no existing user-friendly tool is able to analyze data from all approaches of BSP. Therefore, the most convenient way to process results from the direct sequencing of PCR products (direct-BSP) is to manually analyze the chromatogram traces, which is a repetitive and prone to error task. RESULTS Here, we implement a new R-based tool, called ABSP for analysis of bisulfite sequencing PCR, providing a complete analytic process of both direct-BSP and cloning-BSP data. It uses the raw sequencing trace files (.ab1) as input to compute and compare CpG methylation percentages. It is fully automated and includes a user-friendly interface as a built-in R shiny app, quality control steps and generates publication-ready graphics. AVAILABILITY AND IMPLEMENTATION The ABSP tool and associated data are available on GitHub at https://github.com/ABSP-methylation-tool/ABSP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marie Denoulet
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille F-59000, France
| | - Mathilde Brulé
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille F-59000, France
| | - François Anquez
- CNRS, UMR 8523 - PhLAM—Physique des Lasers Atomes et Molécules, University of Lille, Lille F-59000, France
| | - Audrey Vincent
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, Amiens 80000, France
| | - Eric Adriaenssens
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Robert-Alain Toillon
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Xuefen Le Bourhis
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | | |
Collapse
|
2
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Adampourezare M, Saadati A, Hasanzadeh M, Dehghan G, Feizi MAH. Reliable recognition of DNA methylation using bioanalysis of hybridization on the surface of Ag/GQD nanocomposite stabilized on poly (β-cyclodextrin): A new platform for DNA damage studies using genosensor technology. J Mol Recognit 2021; 35:e2945. [PMID: 34904757 DOI: 10.1002/jmr.2945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022]
Abstract
Due to the role of DNA methylation in causing cancer in the present study, an innovative and inexpensive method was designed for the sensitive detection of DNA methylation. The silver-graphene quantum dots (Ag/GQDs) nano ink with high electrical conductivity was used as a substrate for genosensor fabrication toward identification of DNA hybridization. Also, poly (β-cyclodextrin) (p[β-CD]) has been used as a biointerface for the stabilization of Ag/GQD nano ink. The thiolated pDNA strand (5'-SH-TCCGCTTCCCGACCCGCACTCCGC-3') (as bioreceptor element) was fixed on the substrate and hybridized with methylated (5'-GC(M)GGAGTGC(M)GGGTC(M)GGGAAGC(M)GGA-3') and unmethylated (5'-GCGGAGTGCGGGTCGGGAAGCGGA-3') cDNAs, as target sequences were studied using electroanalysis methods. Under optimal conditions and using electrochemical techniques, the linear range was 1 am to 1 pm with LLOQ of 1aM. Finally, the designed DNA genosensor was used for detection of DNA methylation in human plasma samples and can be used to detect methylation in patient samples. It is expected that the designed DNA-based biodevice will be used to early stage diagnosis of cancer using monitoring of DNA methylation. Also, this type of genosensor can be used for epigenetic studies in the near future.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
4
|
Pajares MJ, Palanca-Ballester C, Urtasun R, Alemany-Cosme E, Lahoz A, Sandoval J. Methods for analysis of specific DNA methylation status. Methods 2020; 187:3-12. [PMID: 32640317 DOI: 10.1016/j.ymeth.2020.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Methylation of CpG dinucleotides plays a crucial role in the regulation of gene expression and therefore in the development of different pathologies. Aberrant methylation has been associated to the majority of the diseases, including cancer, neurodegenerative, cardiovascular and autoimmune disorders. Analysis of DNA methylation patterns is crucial to understand the underlying molecular mechanism of these diseases. Moreover, DNA methylation patterns could be used as biomarker for clinical management, such as diagnosis, prognosis and treatment response. Nowadays, a variety of high throughput methods for DNA methylation have been developed to analyze the methylation status of a high number of CpGs at once or even the whole genome. However, identification of specific methylation patterns at specific loci is essential for validation and also as a tool for diagnosis. In this review, we describe the most commonly used approaches to evaluate specific DNA methylation. There are three main groups of techniques that allow the identification of specific regions that are differentially methylated: bisulfite conversion-based methods, restriction enzyme-based approaches, and affinity enrichment-based assays. In the first group, specific restriction enzymes recognize and cleave unmethylated DNA, leaving methylated sequences intact. Bisulfite conversion methods are the most popular approach to distinguish methylated and unmethylated DNA. Unmethylated cytosines are deaminated to uracil by sodium bisulfite treatment, while the methyl cytosines remain unconverted. In the last group, proteins with methylation binding domains or antibodies against methyl cytosines are used to recognize methylated DNA. In this review, we provide the theoretical basis and the framework of each technique as well as the analysis of their strength and the weaknesses.
Collapse
Affiliation(s)
- María J Pajares
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
| | - Cora Palanca-Ballester
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Ester Alemany-Cosme
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain.
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain; Epigenomics Core Facility, Health Research Institute la Fe, 46026 Valencia, Spain.
| |
Collapse
|
5
|
Epigenetics and Inflammatory Markers: A Systematic Review of the Current Evidence. Int J Inflam 2019; 2019:6273680. [PMID: 31205673 PMCID: PMC6530203 DOI: 10.1155/2019/6273680] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms have been suggested to play a role in the genetic regulation of pathways related to inflammation. Therefore, we aimed to systematically review studies investigating the association between DNA methylation and histone modifications with circulatory inflammation markers in blood. Five bibliographic databases were screened until 21 November of 2017. We included studies conducted on humans that examined the association between epigenetic marks (DNA methylation and/or histone modifications) and a comprehensive list of inflammatory markers. Of the 3,759 identified references, 24 articles were included, involving, 17,399 individuals. There was suggestive evidence for global hypomethylation but better-quality studies in the future have to confirm this. Epigenome-wide association studies (EWAS) (n=7) reported most of the identified differentially methylated genes to be hypomethylated in inflammatory processes. Candidate genes studies reported 18 differentially methylated genes related to several circulatory inflammation markers. There was no overlap in the methylated sites investigated in candidate gene studies and EWAS, except for TMEM49, which was found to be hypomethylated with higher inflammatory markers in both types of studies. The relation between histone modifications and inflammatory markers was assessed by one study only. This review supports an association between epigenetic marks and inflammation, suggesting hypomethylation of the genome. Important gaps in the quality of studies were reported such as inadequate sample size, lack of adjustment for relevant confounders, and failure to replicate the findings. While most of the studies have been focused on C-reactive protein, further efforts should investigate other inflammatory markers.
Collapse
|
6
|
Liu CC, Ji H. PCR Amplification Strategies Towards Full-length HIV-1 Genome Sequencing. Curr HIV Res 2019; 16:98-105. [PMID: 29943704 DOI: 10.2174/1570162x16666180626152252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/05/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022]
Abstract
The advent of next-generation sequencing has enabled greater resolution of viral diversity and improved feasibility of full viral genome sequencing allowing routine HIV-1 full genome sequencing in both research and diagnostic settings. Regardless of the sequencing platform selected, successful PCR amplification of the HIV-1 genome is essential for sequencing template preparation. As such, full HIV-1 genome amplification is a crucial step in dictating the successful and reliable sequencing downstream. Here we reviewed existing PCR protocols leading to HIV-1 full genome sequencing. In addition to the discussion on basic considerations on relevant PCR design, the advantages as well as the pitfalls of the published protocols were reviewed.
Collapse
Affiliation(s)
- Chao Chun Liu
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Center, Public Health Agency of Canada, Winnipeg, Canada
| | - Hezhao Ji
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Center, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
7
|
Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, Reik W. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol 2018; 19:33. [PMID: 29544553 PMCID: PMC5856372 DOI: 10.1186/s13059-018-1408-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Background Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing. Results We perform a comparative analysis of several commonly used pre- and post-bisulfite WGBS library preparation protocols for their performance and quality of sequencing outputs. Our results show that bisulfite conversion per se is the main trigger of pronounced sequencing biases, and PCR amplification builds on these underlying artefacts. The majority of standard library preparation methods yield a significantly biased sequence output and overestimate global methylation. Importantly, both absolute and relative methylation levels at specific genomic regions vary substantially between methods, with clear implications for DNA methylation studies. Conclusions We show that amplification-free library preparation is the least biased approach for WGBS. In protocols with amplification, the choice of bisulfite conversion protocol or polymerase can significantly minimize artefacts. To aid with the quality assessment of existing WGBS datasets, we have integrated a bias diagnostic tool in the Bismark package and offer several approaches for consideration during the preparation and analysis of WGBS datasets. Electronic supplementary material The online version of this article (10.1186/s13059-018-1408-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nelly Olova
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.,Present address: MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Rebecca V Berrens
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. .,Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
8
|
Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Sci Int Genet 2018; 33:17-23. [DOI: 10.1016/j.fsigen.2017.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022]
|
9
|
Arbeithuber B, Makova KD, Tiemann-Boege I. Artifactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications. DNA Res 2016; 23:547-559. [PMID: 27477585 PMCID: PMC5144678 DOI: 10.1093/dnares/dsw038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/25/2016] [Indexed: 11/13/2022] Open
Abstract
The need in cancer research or evolutionary biology to detect rare mutations or variants present at very low frequencies (<10−5) poses an increasing demand on lowering the detection limits of available methods. Here we demonstrated that amplifiable DNA lesions introduce important error sources in ultrasensitive technologies such as single molecule PCR (smPCR) applications (e.g. droplet-digital PCR), or next-generation sequencing (NGS) based methods. Using templates with known amplifiable lesions (8-oxoguanine, deaminated 5-methylcytosine, uracil, and DNA heteroduplexes), we assessed with smPCR and duplex sequencing that templates with these lesions were amplified very efficiently by proofreading polymerases (except uracil), leading to G->T, and to a lesser extent, to unreported G->C substitutions at 8-oxoguanine lesions, and C->T transitions in amplified uracil containing templates. Long heat incubations common in many DNA extraction protocols significantly increased the number of G->T substitutions. Moreover, in ∼50-80% smPCR reactions we observed the random amplification preference of only one of both DNA strands explaining the known ‘PCR jackpot effect’, with the result that a lesion became indistinguishable from a true mutation or variant. Finally, we showed that artifactual mutations derived from uracil and 8-oxoguanine could be significantly reduced by DNA repair enzymes.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, Linz 4020, Austria.,Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
10
|
Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27:14-29. [DOI: 10.1016/j.drup.2016.05.001] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
|
11
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Yu H, Hahn Y, Yang I. Reference Materials for Calibration of Analytical Biases in Quantification of DNA Methylation. PLoS One 2015; 10:e0137006. [PMID: 26368560 PMCID: PMC4569303 DOI: 10.1371/journal.pone.0137006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 01/04/2023] Open
Abstract
Most contemporary methods for the quantification of DNA methylation employ bisulfite conversion and PCR amplification. However, many reports have indicated that bisulfite-mediated PCR methodologies can result in inaccurate measurements of DNA methylation owing to amplification biases. To calibrate analytical biases in quantification of gene methylation, especially those that arise during PCR, we utilized reference materials that represent exact bisulfite-converted sequences with 0% and 100% methylation status of specific genes. After determining relative quantities using qPCR, pairs of plasmids were gravimetrically mixed to generate working standards with predefined DNA methylation levels at 10% intervals in terms of mole fractions. The working standards were used as controls to optimize the experimental conditions and also as calibration standards in melting-based and sequencing-based analyses of DNA methylation. Use of the reference materials enabled precise characterization and proper calibration of various biases during PCR and subsequent methylation measurement processes, resulting in accurate measurements.
Collapse
Affiliation(s)
- Hannah Yu
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 305–340, Republic of Korea
- Bio-analytical Science, University of Science and Technology, Daejeon, 305–340, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 156–756, Republic of Korea
| | - Inchul Yang
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 305–340, Republic of Korea
- Bio-analytical Science, University of Science and Technology, Daejeon, 305–340, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5:821-64. [PMID: 25229548 PMCID: PMC4198933 DOI: 10.3390/genes5030821] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
Collapse
|
14
|
Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 2014; 55:181-97. [PMID: 24107250 DOI: 10.2144/000114087] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 09/10/2013] [Indexed: 02/07/2023] Open
Abstract
Comprehensive analysis of DNA methylation patterns is critical for understanding the molecular basis of many human diseases. While hundreds of PCR-based DNA methylation studies are published every year, the selection and implementation of appropriate methods for these studies can be challenging for molecular genetics researchers not yet familiar with methylation analysis. Here we review the most commonly used PCR-based DNA methylation analysis techniques: bisulfite sequencing PCR (BSP), methylation specific PCR (MSP), MethyLight, and methylation-sensitive high resolution melting (MS-HRM). We provide critical analysis of the strengths and weaknesses of each approach as well as a series of guidelines to assist in selecting and implementing an appropriate method.
Collapse
|
15
|
Chen Y, Wang J. A membrane-based near-infrared fluorescence assay for detecting DNA methylation and transcription. Anal Biochem 2013; 442:196-204. [DOI: 10.1016/j.ab.2013.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/11/2013] [Accepted: 07/25/2013] [Indexed: 11/25/2022]
|
16
|
Ogunwobi OO, Puszyk W, Dong HJ, Liu C. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS One 2013; 8:e63765. [PMID: 23723997 PMCID: PMC3665785 DOI: 10.1371/journal.pone.0063765] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, are important regulators of growth and differentiation of healthy hepatocytes. However, upregulation of HGF and c-Met have been associated with tumor progression and metastasis in hepatocellular carcinoma (HCC). Hematogenous dissemination is the most common route for cancer metastasis, but the role of HGF and c-Met in circulating tumor cells (CTCs) is unknown. We have isolated and established a circulating tumor cell line from the peripheral blood of a mouse HCC model. Our studies show that these CTCs have increased expression of HGF and c-Met in comparison to the primary tumor cells. The CTCs display phenotypic evidence of epithelial-mesenchymal transition (EMT) and the EMT appears to be inducible by HGF. Epigenetic analysis of the c-Met promoter identified significant loss of DNA methylation in CTCs which correlated with overexpression of c-Met and increased expression of HGF. Six specific CpG sites of c-Met promoter demethylation were identified. CTCs show significantly increased tumorigenicity and metastatic potential in a novel orthotopic syngeneic model of metastatic HCC. We conclude that during hematogenous dissemination in HCC, CTCs undergo EMT under the influence of increased HGF. This process also involves up regulation of c-Met via promoter demethylation at 6 CpG sites. Consequently, targeting HGF and c-Met expression by CTCs may be a novel non-invasive approach with potential clinical applications in HCC management.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- DNA Methylation/genetics
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Hepatocyte Growth Factor/genetics
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mesoderm/pathology
- Mice
- Mice, Inbred BALB C
- Models, Biological
- Molecular Sequence Data
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - William Puszyk
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Hui-Jia Dong
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fujimo K, Konishi-Hiratsuka K, Sakamoto T. Quick, Selective and Reversible Photocrosslinking Reaction between 5-Methylcytosine and 3-Cyanovinylcarbazole in DNA Double Strand. Int J Mol Sci 2013; 14:5765-74. [PMID: 23481638 PMCID: PMC3634424 DOI: 10.3390/ijms14035765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/12/2013] [Accepted: 02/26/2013] [Indexed: 02/02/2023] Open
Abstract
Selective photocrosslinking reaction between 3-cyanovinylcarbazole nucleoside (CNVK) and 5-methylcytosine (mC), which is known as epigenetic modification in genomic DNA, was developed. The reaction was completely finished within 5 s of 366 nm irradiation, and the rate of this photocrosslinking reaction was ca. 30-fold higher than that in the case of unmodified normal cytosine. There were no significant differences in the thermodynamic parameters and the kinetics of hybrid formation of oligonucleotide (ODN) containing CNVK and its complementary ODN containing C or mC at the photocrosslinking site, and suggesting that the quick and selective photoreaction has potential for the selective detection of mC in the DNA strand via the photocrosslinking reaction.
Collapse
Affiliation(s)
- Kenzo Fujimo
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan; E-Mails: (K.K.-H.); (T.S.)
- Research Center for Bio-Architecture, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-761-51-1671
| | - Kaoru Konishi-Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan; E-Mails: (K.K.-H.); (T.S.)
| | - Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan; E-Mails: (K.K.-H.); (T.S.)
| |
Collapse
|
18
|
Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn 2012; 12:473-87. [PMID: 22702364 DOI: 10.1586/erm.12.45] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Altered DNA methylation is ubiquitous in human cancers and specific methylation changes are often correlated with clinical features. DNA methylation biomarkers, which use those specific methylation changes, provide a range of opportunities for early detection, diagnosis, prognosis, therapeutic stratification and post-therapeutic monitoring. Here we review current approaches to developing and applying DNA methylation biomarkers in cancer therapy. We discuss the obstacles that have so far limited the routine use of DNA methylation biomarkers in clinical settings and describe ways in which these obstacles can be overcome. Finally, we summarize the current state of clinical implementation for some of the most widely studied and well-validated DNA methylation biomarkers, including SEPT9, VIM, SHOX2, PITX2 and MGMT.
Collapse
Affiliation(s)
- Thomas Mikeska
- Molecular Pathology Research & Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
| | | | | | | |
Collapse
|
19
|
Brinkhuizen T, van den Hurk K, Winnepenninckx VJL, de Hoon JP, van Marion AM, Veeck J, van Engeland M, van Steensel MAM. Epigenetic changes in Basal Cell Carcinoma affect SHH and WNT signaling components. PLoS One 2012; 7:e51710. [PMID: 23284750 PMCID: PMC3524166 DOI: 10.1371/journal.pone.0051710] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023] Open
Abstract
Background The genetic background of Basal Cell Carcinoma (BCC) has been studied extensively, while its epigenetic makeup has received comparatively little attention. Epigenetic alterations such as promoter hypermethylation silence tumor suppressor genes (TSG) in several malignancies. Objective We sought to analyze the promoter methylation status of ten putative (tumor suppressor) genes that are associated with Sonic Hedgehog (SHH), WNT signaling and (hair follicle) tumors in a large series of 112 BCC and 124 healthy control samples by methylation-specific PCR. Results Gene promoters of SHH (P = 0.016), adenomatous polyposis coli (APC) (P = 0.003), secreted frizzled-related protein 5 (SFRP5) (P = 0.004) and Ras association domain family 1A (RASSF1A) (P = 0.023) showed significantly more methylation in BCC versus normal skin. mRNA levels of these four genes were reduced for APC and SFRP5 in BCC (n = 6) vs normal skin (n = 6). Down regulation of SHH, APC and RASSF1A could be confirmed on protein level as well (P<0.001 for all genes) by immunohistochemical staining. Increased canonical WNT activity was visualized by β-catenin staining, showing nuclear β-catenin in only 28/101 (27.7%) of BCC. Absence of nuclear β-catenin in some samples may be due to high levels of membranous E-cadherin (in 94.1% of the samples). Conclusions We provide evidence that promoter hypermethylation of key players within the SHH and WNT pathways is frequent in BCC, consistent with their known constitutive activation in BCC. Epigenetic gene silencing putatively contributes to BCC tumorigenesis, indicating new venues for treatment.
Collapse
Affiliation(s)
- Tjinta Brinkhuizen
- Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Advancesin capillary electrophoresis-based methods for DNA methylation analysis. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Mikeska T, Candiloro ILM, Dobrovic A. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics 2012; 2:561-73. [PMID: 22121974 DOI: 10.2217/epi.10.32] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA methylation based biomarkers have considerable potential for molecular diagnostics, both as tumor specific biomarkers for the early detection or post-therapeutic monitoring of cancer as well as prognostic and predictive biomarkers for therapeutic stratification. Particularly in the former, the accurate estimation of DNA methylation is of compelling importance. However, quantification of DNA methylation has many traps for the unwary, especially when heterogeneous methylation comprising multiple alleles with varied DNA methylation patterns (epialleles) is present. The frequent occurrence of heterogeneous methylation as distinct from a simple mixture of fully methylated and unmethylated alleles is generally not taken into account when DNA methylation is considered as a cancer biomarker. When heterogeneous DNA methylation is present, the proportion of methylated molecules is difficult to quantify without a method that allows the measurement of individual epialleles. In this article, we critically assess the methodologies frequently used to investigate DNA methylation, with an emphasis on the detection and measurement of heterogeneous DNA methylation. The adoption of digital approaches will enable the effective use of heterogeneous DNA methylation as a cancer biomarker.
Collapse
Affiliation(s)
- Thomas Mikeska
- Molecular Pathology Research & Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia.
| | | | | |
Collapse
|
22
|
Lloyd AH, Wang D, Timmis JN. Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis. PLoS One 2012; 7:e32255. [PMID: 22389691 PMCID: PMC3289645 DOI: 10.1371/journal.pone.0032255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/25/2012] [Indexed: 12/28/2022] Open
Abstract
DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1-20 bp) deletions occurred at a minority (25-45%) of repair junctions. Approximately ~1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ.
Collapse
Affiliation(s)
- Andrew H Lloyd
- School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
23
|
Sakamoto T, Ami T, Fujimoto K. 5-Methylcytosine Selective Photoligation Using Photoresponsive Oligonucleotides Containing Various 5-Vinyl-2′-deoxyuridines Having an Aromatic Group. CHEM LETT 2012. [DOI: 10.1246/cl.2012.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Takehiro Ami
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology
- Research Center for Bio-Architecture, Japan Advanced Institute of Science and Technology
| |
Collapse
|
24
|
Abstract
DNA methylation is an epigenetic form of gene regulation that is universally important throughout the life course, especially during in utero and postnatal development. DNA methylation aids in cell cycle regulation and cellular differentiation processes. Previous studies have demonstrated that DNA methylation profiles may be altered by diet and the environment, and that these profiles are especially vulnerable during development. Thus, it is important to understand the role of DNA methylation in developmental governance and subsequent disease progression. A variety of molecular methods exist to assay for global, gene-specific, and epigenome-wide methylation. Here we describe these methods and discuss their relative strengths and limitations.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
25
|
Next-generation sequencing reveals regional differences of the α-synuclein methylation state independent of Lewy body disease. Neuromolecular Med 2011; 13:310-20. [PMID: 22042430 DOI: 10.1007/s12017-011-8163-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/07/2011] [Indexed: 12/17/2022]
Abstract
The α-synuclein gene (SNCA) plays a major role in the aetiology of Lewy body disease (LBD) including Parkinson's disease (PD). Point mutations and genetic alterations causing elevated gene expression are causally linked to familial PD. To what extent epigenetic changes play a role in the regulation of α-synuclein expression and may contribute to the aetiology of sporadic LBD is a matter of debate. We analysed the methylation state of the promoter region and a CpG-rich region of intron 1 of α-synuclein in several brain regions in sporadic LBD and controls using 454 GS-FLX-based high-resolution bisulphite sequencing. Our results indicate that there are significant differences in the level of methylation between different brain areas. The overall methylation levels in the promoter and intron 1 of α-synuclein are rather low in controls and-in contrast to previously reported findings-are not significantly different from LBD. However, single CpG analysis revealed significant hyper- and hypomethylation at different positions in various brain regions and LBD stages. A slight overall increase in methylation related to LBD patients' age was detected.
Collapse
|
26
|
Kato D, Goto K, Fujii SI, Takatsu A, Hirono S, Niwa O. Electrochemical DNA methylation detection for enzymatically digested CpG oligonucleotides. Anal Chem 2011; 83:7595-9. [PMID: 21905720 DOI: 10.1021/ac201761c] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the electrochemical detection of DNA methylation through the direct oxidation of both 5-methylcytosine (mC) and cytosine (C) in 5'-CG-3' sequence (CpG) oligonucleotides using a sputtered nanocarbon film electrode after digesting a longer CpG oligonucleotide with endonuclease P1. Direct electrochemistry of the longer CpG oligonucleotides was insufficient for obtaining the oxidation currents of these bases because the CG rich sequence inhibited the direct oxidation of each base in the longer CpG oligonucleotides, owing to the conformational structure and its very low diffusion coefficient. To detect C methylation with better quantitativity and sensitivity in the relatively long CpG oligonucleotides, we successfully used an endonuclease P1 to digest the target CpG oligonucleotide and yield an identical mononucleotide 2'-deoxyribonucleoside 5'-monophosphate (5'-dNMP). Compared with results obtained without P1 treatment, we achieved 4.4 times higher sensitivity and a wider concentration range for mC detection with a resolution capable of detecting a subtle methylated cytosine difference in the CpG oligonucleotides (60mer).
Collapse
Affiliation(s)
- Dai Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Moskalev EA, Zavgorodnij MG, Majorova SP, Vorobjev IA, Jandaghi P, Bure IV, Hoheisel JD. Correction of PCR-bias in quantitative DNA methylation studies by means of cubic polynomial regression. Nucleic Acids Res 2011; 39:e77. [PMID: 21486748 PMCID: PMC3113592 DOI: 10.1093/nar/gkr213] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA methylation profiling has become an important aspect of biomedical molecular analysis. Polymerase chain reaction (PCR) amplification of bisulphite-treated DNA is a processing step that is common to many currently used methods of quantitative methylation analysis. Preferential amplification of unmethylated alleles—known as PCR-bias—may significantly affect the accuracy of quantification. To date, no universal experimental approach has been reported to overcome the problem. This study presents an effective method of correcting biased methylation data. The procedure includes a calibration performed in parallel to the analysis of the samples under investigation. DNA samples with defined degrees of methylation are analysed. The observed deviation of the experimental results from the expected values is used for calculating a regression curve. The equation of the best-fitting curve is then used for correction of the data obtained from the samples of interest. The process can be applied irrespective of the locus interrogated and the number of sites analysed, avoiding an optimization of the amplification conditions for each individual locus.
Collapse
Affiliation(s)
- Evgeny A Moskalev
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Piperi C, Papavassiliou AG. Strategies for DNA methylation analysis in developmental studies. Dev Growth Differ 2011; 53:287-99. [PMID: 21447098 DOI: 10.1111/j.1440-169x.2011.01253.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developmental processes in eukaryotes are highly dependent on DNA methylation. 5-methylcytosine (m(5) C) is the most prevalent and best understood DNA modification implicated in maintenance of genomic integrity and function across species. Although m(5) C occurs almost exclusively in symmetrical CpG context in vertebrates, additional asymmetrical distribution in CpHpG and CpHpH sites has been observed in plants and embryonic stem cells. To this end, accurate and reproducible methodology for full analysis of the DNA methylome is highly demanded. Fortunately, a variety of methods enable quantitative DNA methylation mapping at a single-base resolution and in a large scale. Here, we provide a critical overview of methods applied primarily to m(5) C detection with particular emphasis on technical improvements of the classical bisulfite-conversion protocol. We further describe strategies in combination with emerging technologies that allow acquisition of highly reliable data for developmental studies.
Collapse
Affiliation(s)
- Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | | |
Collapse
|
29
|
Direct electrochemical detection of DNA methylation for retinoblastoma and CpG fragments using a nanocarbon film. Anal Biochem 2010; 405:59-66. [DOI: 10.1016/j.ab.2010.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/13/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
30
|
Stapleton JA, Swartz JR. A cell-free microtiter plate screen for improved [FeFe] hydrogenases. PLoS One 2010; 5:e10554. [PMID: 20479937 PMCID: PMC2866662 DOI: 10.1371/journal.pone.0010554] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 04/09/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND [FeFe] hydrogenase enzymes catalyze the production and dissociation of H(2), a potential renewable fuel. Attempts to exploit these catalysts in engineered systems have been hindered by the biotechnologically inconvenient properties of the natural enzymes, including their extreme oxygen sensitivity. Directed evolution has been used to improve the characteristics of a range of natural catalysts, but has been largely unsuccessful for [FeFe] hydrogenases because of a lack of convenient screening platforms. METHODOLOGY/PRINCIPAL FINDINGS Here we describe an in vitro screening technology for oxygen-tolerant and highly active [FeFe] hydrogenases. Despite the complexity of the protocol, we demonstrate a level of reproducibility that allows moderately improved mutants to be isolated. We have used the platform to identify a mutant of the Chlamydomonas reinhardtii [FeFe] hydrogenase HydA1 with a specific activity approximately 4 times that of the wild-type enzyme. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the feasibility of using the screen presented here for large-scale efforts to identify improved biocatalysts for energy applications. The system is based on our ability to activate these complex enzymes in E. coli cell extracts, which allows unhindered access to the protein maturation and assay environment.
Collapse
Affiliation(s)
- James A. Stapleton
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - James R. Swartz
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| |
Collapse
|
31
|
Payne MS, Goss KCW, Connett GJ, Kollamparambil T, Legg JP, Thwaites R, Ashton M, Puddy V, Peacock JL, Bruce KD. Molecular microbiological characterization of preterm neonates at risk of bronchopulmonary dysplasia. Pediatr Res 2010; 67:412-8. [PMID: 20035248 DOI: 10.1203/pdr.0b013e3181d026c3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of infection in bronchopulmonary dysplasia (BPD) is unknown. We present an observational study of 55 premature infants born weighing less than 1.3 kg within two level III neonatal intensive care units. Endotracheal aspirates (ETA) and nasogastric aspirates (NGA) were studied with denaturing gradient gel electrophoresis (DGGE) profiling to elucidate the total bacterial community, and species-specific PCR was used to detect the presence of Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum. DGGE identified bacterial species in 59% of NGA and ETA samples combined. A diverse range of species were identified including several implicated in preterm labor. Species-specific PCR identified M. hominis in 25% of NGA and 11% of ETA samples. Among the 48 infants surviving up to 36 wk-postconceptual age, ordinal logistic regression showed the odds ratio for BPD or death where Ureaplasma was present/absent as 4.80 (95% CI 1.15-20.13). After adjusting for number of days ventilated, this was reduced to 2.04 (0.41-10.25). These data demonstrate how the combined use of DGGE and species-specific PCR identifies a high exposure in utero and around the time of birth to bacteria that might be causally related to preterm delivery and subsequent lung injury.
Collapse
Affiliation(s)
- Matthew S Payne
- Pharmaceutical Science Division, School of Biomedical and Health Sciences, King's College, London, SE1 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The term 'single-molecule genomics' (SMG) describes a group of molecular methods in which single molecules are detected or sequenced. The focus on the analysis of individual molecules distinguishes these techniques from more traditional methods, in which template DNA is cloned or PCR-amplified prior to analysis. Although technically challenging, the analysis of single molecules has the potential to play a major role in the delivery of truly personalized medicine. The two main subgroups of SMG methods are single-molecule digital PCR and single-molecule sequencing. Single-molecule PCR has a number of advantages over competing technologies, including improved detection of rare genetic variants and more precise analysis of copy-number variation, and is more easily adapted to the often small amount of material that is available in clinical samples. Single-molecule sequencing refers to a number of different methods that are mainly still in development but have the potential to make a huge impact on personalized medicine in the future.
Collapse
Affiliation(s)
- Frank McCaughan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
33
|
Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010; 11:191-203. [DOI: 10.1038/nrg2732] [Citation(s) in RCA: 1083] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 2010; 397:96-106. [DOI: 10.1016/j.ab.2009.10.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
35
|
Zon G, Barker MA, Kaur P, Groshen S, Jones LW, Imam SA, Boyd VL. Formamide as a denaturant for bisulfite conversion of genomic DNA: Bisulfite sequencing of the GSTPi and RARβ2 genes of 43 formalin-fixed paraffin-embedded prostate cancer specimens. Anal Biochem 2009; 392:117-25. [DOI: 10.1016/j.ab.2009.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 12/20/2022]
|
36
|
Kristensen LS, Hansen LL. PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin Chem 2009; 55:1471-83. [PMID: 19520761 DOI: 10.1373/clinchem.2008.121962] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND DNA methylation is a highly characterized epigenetic modification of the human genome that is implicated in cancer. The altered DNA methylation patterns found in cancer cells include not only global hypomethylation but also discrete hypermethylation of specific genes. In particular, numerous tumor suppressor genes undergo epigenetic silencing because of hypermethylated promoter regions. Some of these genes are considered promising DNA methylation biomarkers for early cancer diagnostics, and some have been shown to be valuable for predicting prognosis or the response to therapy. CONTENT PCR-based methods that use sodium bisulfite-treated DNA as a template are generally accepted as the most analytically sensitive and specific techniques for analyzing DNA methylation at single loci. A number of new methods, such as methylation-specific fluorescent amplicon generation (MS-FLAG), methylation-sensitive high-resolution melting (MS-HRM), and sensitive melting analysis after real-time methylation-specific PCR (SMART-MSP), now complement the traditional PCR-based methods and promise to be valuable diagnostic tools. In particular, the HRM technique shows great potential as a diagnostic tool because of its closed-tube format and cost-effectiveness. SUMMARY Numerous traditional and new PCR-based methods have been developed for detecting DNA methylation at single loci. All have characteristic advantages and disadvantages, particularly with regard to use in clinical settings.
Collapse
|
37
|
Varley KE, Mutch DG, Edmonston TB, Goodfellow PJ, Mitra RD. Intra-tumor heterogeneity of MLH1 promoter methylation revealed by deep single molecule bisulfite sequencing. Nucleic Acids Res 2009; 37:4603-12. [PMID: 19494183 PMCID: PMC2724279 DOI: 10.1093/nar/gkp457] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A single tumor may contain cells with different somatic mutations. By characterizing this genetic heterogeneity within tumors, advances have been made in the prognosis, treatment and understanding of tumorigenesis. In contrast, the extent of epigenetic intra-tumor heterogeneity and how it influences tumor biology is under-explored. We have characterized epigenetic heterogeneity within individual tumors using next-generation sequencing. We used deep single molecule bisulfite sequencing and sample-specific DNA barcodes to determine the spectrum of MLH1 promoter methylation across an average of 1000 molecules in each of 33 individual samples in parallel, including endometrial cancer, matched blood and normal endometrium. This first glimpse, deep into each tumor, revealed unexpectedly heterogeneous patterns of methylation at the MLH1 promoter within a subset of endometrial tumors. This high-resolution analysis allowed us to measure the clonality of methylation in individual tumors and gain insight into the accumulation of aberrant promoter methylation on both alleles during tumorigenesis.
Collapse
Affiliation(s)
- Katherine E Varley
- Department of Genetics, Center for Genome Sciences, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
38
|
Ranade SS, Chung CB, Zon G, Boyd VL. Preparation of genome-wide DNA fragment libraries using bisulfite in polyacrylamide gel electrophoresis slices with formamide denaturation and quality control for massively parallel sequencing by oligonucleotide ligation and detection. Anal Biochem 2009; 390:126-35. [PMID: 19379703 DOI: 10.1016/j.ab.2009.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/10/2009] [Accepted: 04/13/2009] [Indexed: 01/25/2023]
Abstract
Bisulfite sequencing is widely used for analysis of DNA methylation status (i.e., 5-methylcytosine [5mC] vs. cytosine [C]) in CpG-rich or other loci in genomic DNA (gDNA). Such methods typically involve reaction of gDNA with bisulfite followed by polymerase chain reaction (PCR) amplification of specific regions of interest that, overall, converts C-->T (thymine) and 5mC-->C and then capillary sequencing to measure C versus T composition at CpG sites. Massively parallel sequencing by oligonucleotide ligation and detection (SOLiD) has recently enabled relatively low-cost whole genome sequencing, and it would be highly desirable to apply such massively parallel sequencing to bisulfite-converted whole genomes to determine DNA methylation status of an entire genome, which has heretofore not been reported. As an initial step toward achieving this goal, we have extended our ongoing interest in improving bisulfite conversion sample preparation to include a human genome-wide fragment library for SOliD. The current article features novel use of formamide denaturant during bisulfite conversion of a suitably constructed library directly in a band slice from polyacryamide gel electrophoresis (PAGE). To validate this new protocol for 5mC-protected fragment library conversion, which we refer to as Bis-PAGE, capillary-based size analysis and Sanger sequencing were carried out for individual amplicons derived from single-molecule PCR (smPCR) of randomly selected library fragments. smPCR/Capillary Sanger sequencing of approximately 200 amplicons unambiguously demonstrated greater than 99% C-->T conversion. All of these approximately 200 Sanger sequences were analyzed with a previously published web-accessible bioinformatics tool (methBLAST) for mapping to human chromosomes, the results of which indicated random distribution of analyzed fragments across all chromosomes. Although these particular Bis-PAGE conversion and quality control methods were exemplified in the context of a fragment library for SOLiD, the concepts can be generalized to include other genome-wide library constructions intended for DNA methylation analysis by alternative high-throughput or massively parallelized methods that are currently available.
Collapse
|
39
|
Ogino M, Taya Y, Fujimoto K. Detection of methylcytosine by DNA photoligation via hydrophobic interaction of the alkyl group. Org Biomol Chem 2009. [DOI: 10.1039/b904941j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Michikawa Y, Sugahara K, Suga T, Ohtsuka Y, Ishikawa K, Ishikawa A, Shiomi N, Shiomi T, Iwakawa M, Imai T. In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level. Anal Biochem 2008; 383:151-8. [DOI: 10.1016/j.ab.2008.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/13/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
|
41
|
Candiloro ILM, Mikeska T, Hokland P, Dobrovic A. Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene. Epigenetics Chromatin 2008; 1:7. [PMID: 19014416 PMCID: PMC2590600 DOI: 10.1186/1756-8935-1-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/03/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Methylation-sensitive high resolution melting (MS-HRM) methodology is able to recognise heterogeneously methylated sequences by their characteristic melting profiles. To further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM (dMS-HRM) that involves the amplification of single templates after limiting dilution to quantify and to determine the degree of methylation. We used this approach to study methylation of the CDKN2B (p15) cell cycle progression inhibitor gene which is inactivated by DNA methylation in haematological malignancies of the myeloid lineage. Its promoter region usually shows heterogeneous methylation and is only rarely fully methylated. The methylation status of CDKN2B can be used as a biomarker of response to treatment. Therefore the accurate characterisation of its methylation is desirable. RESULTS MS-HRM was used to assess CDKN2B methylation in acute myeloid leukaemia (AML) samples. All the AML samples that were methylated at the CDKN2B promoter (40/93) showed varying degrees of heterogeneous methylation. Six representative samples were selected for further study. dMS-HRM was used to simultaneously count the methylated alleles and assess the degree of methylation. Direct sequencing of selected dMS-HRM products was used to determine the exact DNA methylation pattern and confirmed the degree of methylation estimated by dMS-HRM. CONCLUSION dMS-HRM is a powerful technique for the analysis of methylation in CDKN2B and other heterogeneously methylated genes. It eliminates both PCR and cloning bias towards either methylated or unmethylated DNA. Potentially complex information is simplified into a digital output, allowing counting of methylated and unmethylated alleles and providing an overall picture of methylation at the given locus. Downstream sequencing is minimised as dMS-HRM acts as a screen to select only methylated clones for further analysis.
Collapse
Affiliation(s)
- Ida L M Candiloro
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia.
| | | | | | | |
Collapse
|
42
|
Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, Liang G, Esteva FJ, Hortobagyi GN, McCormick F, Jones PA, Laird PW. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res 2008; 36:4689-98. [PMID: 18628296 PMCID: PMC2504308 DOI: 10.1093/nar/gkn455] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Alterations in cytosine-5 DNA methylation are frequently observed in most types of human cancer. Although assays utilizing PCR amplification of bisulfite-converted DNA are widely employed to analyze these DNA methylation alterations, they are generally limited in throughput capacity, detection sensitivity, and or resolution. Digital PCR, in which a DNA sample is analyzed in distributive fashion over multiple reaction chambers, allows for enumeration of discrete template DNA molecules, as well as sequestration of non-specific primer annealing templates into negative chambers, thereby increasing the signal-to-noise ratio in positive chambers. Here, we have applied digital PCR technology to bisulfite-converted DNA for single-molecule high-resolution DNA methylation analysis and for increased sensitivity DNA methylation detection. We developed digital bisulfite genomic DNA sequencing to efficiently determine single-basepair DNA methylation patterns on single-molecule DNA templates without an interim cloning step. We also developed digital MethyLight, which surpasses traditional MethyLight in detection sensitivity and quantitative accuracy for low quantities of DNA. Using digital MethyLight, we identified single-molecule, cancer-specific DNA hypermethylation events in the CpG islands of RUNX3, CLDN5 and FOXE1 present in plasma samples from breast cancer patients.
Collapse
Affiliation(s)
- Daniel J Weisenberger
- Department of Surgery, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|