1
|
Zhang C, Qiu M, Wang J, Liu Y. Recent Advances in Nanoparticle-Based Optical Sensors for Detection of Pesticide Residues in Soil. BIOSENSORS 2023; 13:bios13040415. [PMID: 37185490 PMCID: PMC10136432 DOI: 10.3390/bios13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
The excessive and unreasonable use of pesticides has adversely affected the environment and human health. The soil, one of the most critical natural resources supporting human survival and development, accumulates large amounts of pesticide residues. Compared to traditional spectrophotometry analytical methods, nanoparticle-based sensors stand out for their simplicity of operation as well as their high sensitivity and low detection limits. In this review, we focus primarily on the functions that various nanoparticles have and how they can be used to detect various pesticide residues in soil. A detailed discussion was conducted on the properties of nanoparticles, including their color changeability, Raman enhancement, fluorescence enhancement and quenching, and catalysis. We have also systematically reviewed the methodology for detecting insecticides, herbicides, and fungicides in soil by using nanoparticles.
Collapse
Affiliation(s)
- Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Mingle Qiu
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Jinglin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
2
|
Jara MDL, Alvarez LAC, Guimarães MCC, Antunes PWP, de Oliveira JP. Lateral flow assay applied to pesticides detection: recent trends and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46487-46508. [PMID: 35507227 PMCID: PMC9067001 DOI: 10.1007/s11356-022-20426-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Devices based on lateral flow assay (LFA) have been gaining more and more space in the detection market mainly due to their simplicity, speed, and low cost. These devices have excellent sensing format versatility and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a "point of care testing" (POCT), and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. However, designing LFA devices for detecting and monitoring pesticides in the environment is still a challenge. This is because analytes are small molecules and have only one antigenic determinant, which makes it difficult to apply direct immunoassays. Furthermore, most LFA devices provide only qualitative or semi-quantitative results and have a limited number of applications in multi-residue analysis. Here, we present the state of the art on the use of LFA in the environmental monitoring of pesticides. Based on well-documented results, we review all available LFA formats and strategies for pesticide detection, which may have important implications for the future of monitoring pesticides in the environment. The main advances, challenges, and perspectives of these devices for a direction in this field of study are also presented.
Collapse
Affiliation(s)
- Marcia Daniela Lazo Jara
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | | | - Marco C C Guimarães
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | - Paulo Wagnner Pereira Antunes
- Bioengen Consulting, Engineering and Environmental Planning, R. Belo Horizonte, Lote 05-Quadra W - Alterosas, Serra, ES, 29168-068, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil.
| |
Collapse
|
3
|
Development of a Test Card Based on Colloidal Gold Immunochromatographic Strips for Rapid Detection of Antibodies against Theileria equi and Babesia caballi. Microbiol Spectr 2022; 10:e0241121. [PMID: 35196786 PMCID: PMC8865536 DOI: 10.1128/spectrum.02411-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Equine piroplasmosis (EP) is a serious problem in the horse industry, and controlling EP is critical for international horse trading. EP is caused by two apicomplexan protozoan parasites, Theileria equi and Babesia caballi. Rapid and accurate methods that are suitable for detecting these parasites in the field are crucial to control the infection and spread of EP. In this study, we developed a card to detect antibodies against T. equi and B. caballi based on two colloidal gold immunochromatographic strips according to the principle of the double-antigen sandwich. The proteins equi merozoite antigen 1 (EMA1) and rhoptry protein BC48 are commonly used as diagnostic antigens against T. equi and B. caballi, respectively. On the strip, the purified EMA1 or BC48 protein labeled with colloidal gold was used as the detector, and nitrocellulose membranes were coated with EMA1 or BC48 and the corresponding MAb as the test and control lines, respectively. The protocol takes 10 to 15 min and requires no specialized equipment or chemical reagents, and one test can detect two EP pathogens in one card. Specificity tests confirmed there was no cross-reactivity with sera positive for common equine pathogens. Using a commercial competitive enzyme-linked immunosorbent assay (cELISA) kit for comparison, 476 clinical samples were tested with the card. The coincidence rates were 96.43% and 97.90% for T. equi and B. caballi, respectively. The field trial feedback was uniformly positive, suggesting that this diagnostic tool may be useful for controlling the spread of T. equi and B. caballi. IMPORTANCE Equine piroplasmosis (EP), caused by Theileria equi and Babesia caballi, is an important tick-borne disease of equines that is prevalent in most parts of the world. EP is considered a reportable disease by the World Organization for Animal Health (OIE). The accurate diagnosis and differentiation of T. equi and B. caballi are very important for the prevention, control, and treatment of EP. Therefore, we developed a double-antigen sandwich colloidal gold immunochromatography assay (GICG) to detect T. equi and B. caballi. Two GICG strips were assembled side by side on one card for the detection of T. equi and B. caballi, and the two EP pathogens could be detected in one test. This method was simple, rapid, and specific for the detection of EP; therefore, compared to the previous methods, this method is more suitable for pathogen diagnosis in the field.
Collapse
|
4
|
Zheng F, Jiang H, Jia J, Wang R, Zhang Z, Xu H. Effect of dimethoate in controlling Monolepta hieroglyphica (Motschulsky) and its distribution in maize by drip irrigation. PEST MANAGEMENT SCIENCE 2020; 76:1523-1530. [PMID: 31686420 DOI: 10.1002/ps.5670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Monolepta hieroglyphica (Motschulsky) is a primary pest of maize. The effect of dimethoate on controlling a M. hieroglyphica infestation was studied using drip irrigation. Field trials were conducted to determine the most effective application rate and water volume for dimethoate treatment in arid and semi-arid regions. The absorption, distribution and dissipation of dimethoate in maize and soil were examined. RESULTS Field trials showed that dimethoate at a rate of 2.70 kg a.i. ha-1 and water volume of 200 m3 ha-1 was the most effective treatment for controlling M. hieroglyphica. Dimethoate via drip irrigation showed longer persistence than dimethoate applied via artificial or unmanned air vehicle spraying. Different parts of the maize plant had a hysteresis effect on dimethoate absorption. Dimethoate was absorbed from the roots, transported upward, and enriched in the leaf. Dimethoate was mainly concentrated within a certain range near the emitter after drip irrigation. Terminal residues of dimethoate in maize grain were below detectable levels 42 days after treatment. CONCLUSIONS Dimethoate treatment via drip irrigation can control M. hieroglyphica infestation on maize. Results showed that dimethoate is safe for maize and the environment. This study provides guidance for the application of pesticides in arid and semi-arid areas. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hui Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jinliang Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ruifei Wang
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
He Y, Hong S, Wang M, Wang J, Abd El-Aty AM, Wang J, Hacimuftuoglu A, Khan M, She Y. Development of fluorescent lateral flow test strips based on an electrospun molecularly imprinted membrane for detection of triazophos residues in tap water. NEW J CHEM 2020. [DOI: 10.1039/d0nj00269k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, a molecularly imprinted membrane chromatography strip using a combination of electrospinning, molecular imprinting, and fluorescent lateral flow test strips (LFTS) was developed for specific recognition of triazophos residues in tap water.
Collapse
Affiliation(s)
- Yahui He
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- P. R. China
| | - Sihui Hong
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Miao Wang
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University
- P. R. China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine
- Cairo University
- 12211-Giza
- Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University
| | - Jing Wang
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University
- 25240-Erzurum
- Turkey
| | - Majid Khan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University
- P. R. China
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| |
Collapse
|
6
|
Yang FW, Li YX, Ren FZ, Wang R, Pang GF. Toxicity, residue, degradation and detection methods of the insecticide triazophos. ENVIRONMENTAL CHEMISTRY LETTERS 2019; 17:1769-1785. [DOI: 10.1007/s10311-019-00910-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/12/2019] [Indexed: 08/22/2024]
|
7
|
Li Z, Zhao F, Tang T, Wang M, Yu X, Wang R, Li Y, Xu Y, Tang L, Wang L, Zhou H, Jiang Y, Cui W, Qiao X. Development of a Colloidal Gold Immunochromatographic Strip Assay for Rapid Detection of Bovine Rotavirus. Viral Immunol 2019; 32:393-401. [PMID: 31596683 DOI: 10.1089/vim.2019.0071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bovine rotavirus (BRV) is one of main pathogens responsible for diarrhea, fever, and vomiting. In this study, we developed a colloidal gold immunochromatographic test strip for detecting BRV according to the principle of double-antibody sandwich. The monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were prepared and purified. On the strip, the purified mAbs labeled with the colloidal gold were used as the detector, and the goat anti-mouse antibodies and purified pAbs were coated on the nitrocellulose membranes as the control line and the test line, respectively. We optimized different reaction conditions, including the amount of mAbs, the pH of colloidal gold solution, coating solution, blocking solution, sample pad treatment solution, antibody concentration in control line, and antibody concentration in detection line. In specificity assay, the strip had high specificity in detecting BRV. No cross-reaction was observed in detecting other viruses. The detection sensitivity of the strip was found to be 1 × 103 TCID50/0.1 mL. Two hundred twenty clinical samples were detected with the strip compared to reverse transcription-polymerase chain reaction. No false-negative or false-positive results were found, and the results obtained by the two methods were similar. In conclusion, we developed a novel immunochromatographic strip to rapidly detect BRV. The strip developed exhibited high sensitivity and specificity for BRV detection. It could be a rapid, convenient, and effective method for the rapid diagnosis of BRV infection in the fields.
Collapse
Affiliation(s)
- Zhenxue Li
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Feipeng Zhao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tingting Tang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mengmeng Wang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoli Yu
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruichong Wang
- Heilongjiang Province Center for Disease Control and Prevention, Department of Radiological Protection, Harbin, China
| | - Yijing Li
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lijie Tang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Han Zhou
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wen Cui
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyuan Qiao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Zhang Y, Chen Y, Cai Y, Cui Z, Zhang J, Wang X, Shen L. Novel polyclonal antibody-based rapid gold sandwich immunochromatographic strip for detecting the major royal jelly protein 1 (MRJP1) in honey. PLoS One 2019; 14:e0212335. [PMID: 30779780 PMCID: PMC6380560 DOI: 10.1371/journal.pone.0212335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/31/2019] [Indexed: 11/25/2022] Open
Abstract
Honey adulteration is becoming increasingly alarming incidents in food safety. Monitoring and detecting adulteration face greater challenges. Honey contains the major royal jelly proteins (MRJP) secreted by bee workers. To detect honey adulteration fast and accurately, a rapid gold sandwich immunochromatographic strip (GSIS) was developed based on two specific polyclonal antibodies (PoAbs) against the MRJP1, the most abundant protein of all MRJPs. We determined the best of pH value (pH 8.6) and PoAb SP-1 amount (5 μg/mL) in conjunction with colloidal. The cut-off value (sensitivity) of GSIS in detecting MRJP1 is 2.0 μg/mL in solution. Validation analysis with RJ, milk vetch honey, acacia honey and honey adulteration containing rice syrup and corn syrup with different ratios demonstrated that the GSIS could show consistent Test line (T line) when the test samples contain more than 30% pure honey or MRJP1 0.4 mg/g. The validation results by isotope ratio mass spectrometry on the same pure and all adulteration milk vetch honey samples showed the same information of GSIS test. The qualitative assay GSIS provided a valuable new way for honey authenticity and laid the foundation for the future application of GSIS with monoclonal antibodies in honey authentication.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiting Cai
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongyan Cui
- Qinhuangdao Entry–Exit Inspection and Quarantine Bureau, Qinhuangdao, Hebei, China
| | - Jinjie Zhang
- Qinhuangdao Entry–Exit Inspection and Quarantine Bureau, Qinhuangdao, Hebei, China
| | - Xiaohou Wang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lirong Shen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Chawla P, Kaushik R, Shiva Swaraj V, Kumar N. Organophosphorus pesticides residues in food and their colorimetric detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Li H, Wang Y, Zha H, Dai P, Xie C. Reagentless Electrochemiluminescence Sensor for Triazophos Based on Molecular Imprinting Electropolymerized Poly(Luminol-p-Aminothiophenol) Composite-Modified Gold Electrode. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3289-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ma S, He J, Guo M, Sun X, Zheng M, Wang Y. Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Guo Y, Liu R, Liu Y, Xiang D, Liu Y, Gui W, Li M, Zhu G. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:783-791. [PMID: 28946376 DOI: 10.1016/j.scitotenv.2017.09.157] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/31/2017] [Accepted: 09/16/2017] [Indexed: 05/15/2023]
Abstract
The wide application of an organophosphate pesticide triazophos raises concern on the environmental pollution and the potential risk to human health. Thus, it is crucial to regularly monitor triazophos residue in the environment and agro-products. Herein we described a non-competitive immunoassay for trace detection of triazophos using a direct surface plasmon resonance (SPR) biosensor. Two anti-triazophos monoclonal antibodies (mAbs) were immobilized on the sensor chip and characterized by SPR-based kinetic analysis. The mAb with relatively slow dissociation rate was used for direct immunosensing of triazophos. The biosensor assay showed a high specificity and a low detection limit of 0.096ngmL-1 to triazophos, with the linear detection range of 0.98-8.29ngmL-1. Under the optimal condition, the sensor chip could be regenerated for 160cycles at least. Moreover, the sensitive method was applied to determine triazophos in the spiked environmental water and agricultural products, as well as in unknown real-life samples (including Chinese cabbage, cucumber, and apple). Desirable results demonstrated that the newly-developed immunosensor could be used as a rapid, convenient, and reliable tool to regularly monitor triazophos and meet the detection requirement of its maximum residue limits.
Collapse
Affiliation(s)
- Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Rui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Ying Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Dandan Xiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yihua Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Mingyu Li
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Hong S, She Y, Cao X, Wang M, Zhang C, Zheng L, Wang S, Ma X, Shao H, Jin M, Jin F, Wang J. Biomimetic enzyme-linked immunoassay based on a molecularly imprinted 96-well plate for the determination of triazophos residues in real samples. RSC Adv 2018; 8:20549-20556. [PMID: 35542374 PMCID: PMC9080809 DOI: 10.1039/c8ra03531h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, a direct competitive biomimetic enzyme-linked immune-sorbent assay (BELISA) based on a molecularly imprinted nanomembrane as an artificial antibody was developed for the determination of triazophos in real samples. The imprinted film was directly synthesized on the well surface of a 96-well plate using a dummy molecular template under the conditions of thermal polymerization. The developed BELISA using a hapten of triazophos as an enzyme-labeled probe is much more sensitive, simple, quick, steady and inexpensive than the other instrumental and immuno assay methods. Under optimal conditions, the linear range of the method was 0.001–10 000 μg L−1 with a good regression coefficient of 0.977. The sensitivity (IC50) and the limit of detection (LOD) of BELISA were 428 μg L−1 and 0.001 μg L−1, respectively. This method was performed to detect triazophos in cabbage and apple samples, and showed excellent recovery and relative standard deviations (RSDs) ranging from 70.5 to 119.8% and from 5.2 to 19.7%, respectively. The results correlated well with those obtained using high performance liquid chromatography-tandem mass spectrometry. In this study, a direct competitive biomimetic enzyme-linked immune-sorbent assay (BELISA) based on a molecularly imprinted nanomembrane as an artificial antibody was developed for the determination of triazophos in real samples.![]()
Collapse
|
14
|
He J, Zhou L, Yao Q, Liu B, Xu H, Huang J. Greenhouse and field-based studies on the distribution of dimethoate in cotton and its effect on Tetranychus urticae by drip irrigation. PEST MANAGEMENT SCIENCE 2018; 74:225-233. [PMID: 28834288 DOI: 10.1002/ps.4704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton. We investigated the efficacy of dimethoate in controlling T. urticae by drip irrigation. Greenhouse and field experiments were carried out to determine the efficacy of dimethoate to T. urticae and the absorption and distribution of dimethoate in cotton. RESULTS Greenhouse results showed that cotton leaves received higher amounts of dimethoate compared with cotton roots and stems, with higher amounts in young leaves compared with old leaves and cotyledon having the lowest amounts among leaves. Field results showed the efficacy of dimethoate to T. urticae by drip irrigation varied by volume of dripping water, soil pH and dimethoate dosage. Dimethoate applied at 3.00 kg ha-1 with 200 m3 ha-1 water at weak acidic soil pH (5.70-6.70) through drip irrigation can obtain satisfactory control efficacy (81.49%, 7 days) to T. urticae, without negatively impacting on its natural enemy Neoseiulus cucumeris. The residue of dimethoate in all cotton seed samples were not detectable. CONCLUSIONS These results demonstrate the effectiveness of applying dimethoate by drip irrigation for control of T. urticae on cotton. This knowledge could aid in the applicability of dimethoate by drip irrigation for field management of T. urticae populations. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangtao He
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Lijuan Zhou
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiang Yao
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo Liu
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Hanhong Xu
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiguang Huang
- South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Tripathi P, Upadhyay N, Nara S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit Rev Food Sci Nutr 2017; 58:1715-1734. [PMID: 28071928 DOI: 10.1080/10408398.2016.1276048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotechnology embraces various physical and chemical phenomena toward advancement of health diagnostics. Toward such advancement, detection of toxins plays an important role. Toxins produce severe health impacts on consumption with high mortality associated in acute cases. The most prominent route of infection and intoxication is through food matrices. Therefore, rapid detection of toxins at low concentrations is the need of modern diagnostics. Lateral flow immunoassays are one of the emergent and popularly used rapid detection technology developed for detecting various kinds of analytes. This review thus focuses on recent advancements in lateral flow immunoassays for detecting different toxins in agricultural food. Appropriate emphasis was given on how the labels, recognition elements, or detection strategy has laid an impact on improvement in immunochromatographic assays for toxins. The paper also discusses the gradual change in sensitivities and specificities of assays in accordance with the method of food processing used. The review concludes with the major challenges faced by this technology and provides an outlook and insight of ideas to improve it in the future.
Collapse
Affiliation(s)
- Pranav Tripathi
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Neha Upadhyay
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Seema Nara
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| |
Collapse
|
16
|
Li H, Xie T, Ye L, Wang Y, Xie C. Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Lan M, Guo Y, Zhao Y, Liu Y, Gui W, Zhu G. Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement. Anal Chim Acta 2016; 938:146-55. [DOI: 10.1016/j.aca.2016.07.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/30/2022]
|
18
|
|
19
|
Shrivas K, Nirmalkar N, Ghosale A, Thakur SS, Shankar R. Enhancement of plasmonic resonance through an exchange reaction on the surface of silver nanoparticles: application to the highly selective detection of triazophos pesticide in food and vegetable samples. RSC Adv 2016. [DOI: 10.1039/c6ra16097b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The proposed method is based on the aggregation of AgNPs due to the exchange of citrate ions from the surface of NPs with triazophos pesticide and causes the color change and red shift in LSPR of AgNPs in the UV-visible region used as sensing probe.
Collapse
Affiliation(s)
- Kamlesh Shrivas
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Nidhi Nirmalkar
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Archana Ghosale
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | | | - Ravi Shankar
- Nanoscience and Nanoengineering Program
- South Dakota School of Mines and Technology
- Rapid City
- USA
- Fujifilm Imaging Colorants
| |
Collapse
|
20
|
Sajid M, Kawde AN, Daud M. Designs, formats and applications of lateral flow assay: A literature review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2015. [DOI: 10.1016/j.jscs.2014.09.001] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Sathe M, Srivastava S, Merwyn S, Agarwal GS, Kaushik MP. Competitive immunochromatographic assay for the detection of thiodiglycol sulfoxide, a degradation product of sulfur mustard. Analyst 2015; 139:5118-26. [PMID: 25121638 DOI: 10.1039/c4an00720d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An immunochromatographic assay (ICA) based on the competitive antigen-coated format using colloidal gold as the label was developed for the detection of thiodiglycol sulfoxide (TDGO), an important metabolite and degradation compound of sulphur mustard (SM). The ICA test strip consisted of a membrane with a detection zone, a sample pad and an absorbent pad. The membrane was separately coated with hapten-OVA conjugate (test line) and anti-rabbit mouse IgG (control line). The visual detection limit for TDGO by ICA detection was found to be 10 μg mL(-1). For validation, the ICA results obtained for spiked water samples were in good agreement with those obtained by indirect competitive inhibition enzyme-linked immunosorbent assay (ELISA) for TDGO. The assay time for detection was less than 10 min. The developed ICA has the potential to be a useful on-site screening tool for the retrospective detection of SM in environmental samples.
Collapse
Affiliation(s)
- Manisha Sathe
- Process Technology Development Division, Discovery Centre, Defense R & D Establishment, Jhansi Road, Gwalior 474002, India.
| | | | | | | | | |
Collapse
|
22
|
A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal Chim Acta 2015; 881:82-9. [DOI: 10.1016/j.aca.2015.04.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/03/2023]
|
23
|
Goudarzi S, Ahmadi A, Farhadi M, Kamran Kamrava S, Mobarrez F, Omidfar K. A new gold nanoparticle based rapid immunochromatographic assay for screening EBV-VCA specific IgA in nasopharyngeal carcinomas. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
Du P, Jin M, Yang L, Du X, Chen G, Zhang C, Jin F, Shao H, She Y, Wang S, Zheng L, Wang J. A rapid immunomagnetic-bead-based immunoassay for triazophos analysis. RSC Adv 2015. [DOI: 10.1039/c5ra15106f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of a direct competitive immunomagnetic-bead-based enzyme-linked immunosorbent assay (IMB-ELISA) to detect the triazophos pesticides.
Collapse
|
25
|
Fan M, Cheng F, Wang C, Gong Z, Tang C, Man C, Brolo AG. SERS optrode as a “fishing rod” to direct pre-concentrate analytes from superhydrophobic surfaces. Chem Commun (Camb) 2015; 51:1965-8. [DOI: 10.1039/c4cc07928k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SERS optrodes were used to “fish” aqueous drops from superhydrophobic surfaces, which led to an improvement of 2–3 orders of magnitude in sensitivity. 20 pg of the pesticide triazophos was detected by this method.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Fansheng Cheng
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | - Cong Wang
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Changyu Tang
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | - Changzhen Man
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | | |
Collapse
|
26
|
Dot immunogold filtration assay (DIGFA) for the rapid detection of specific antibodies against the rat lungworm Angiostrongylus cantonensis (Nematoda: Metastrongyloidea) using purified 31-kDa antigen. J Helminthol 2013; 88:396-401. [PMID: 23710755 DOI: 10.1017/s0022149x13000321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A rapid dot immunogold filtration assay (DIGFA) was adopted for specific immunodiagnosis of human cerebral angiostrongyliasis, using purified 31-kDa glycoprotein specific to Angiostrongylus cantonensis as diagnostic antigen and protein A colloidal gold conjugate as antigen-antibody detector. A total of 59 serum samples were assayed - 11 samples from clinically diagnosed patients with detectable A. cantonensis-specific antibody in immunoblotting; 23 samples from patients with other related parasitic diseases, i.e. gnathostomiasis (n= 8), cysticercosis (n= 5), toxocariasis (n= 2), filariasis (n= 4), paragonimiasis (n= 2) and malaria (n= 2); and 25 samples from normal healthy subjects. The sensitivity and specificity of DIGFA to detect anti-A. cantonensis specific antibodies in serologically confirmed angiostrongyliasis cases, were both 100%. No positive DIGFA was observed in cases with other parasitic diseases, and the healthy control subjects. The 3-min DIGFA is as sensitive and specific as the 3-h immunoblot test in angiostrongyliasis confirmed cases that revealed a 31-kDa reactive band. The gold-based DIGFA is more rapid and easier to perform than the traditional enzyme-linked immunosorbent assay (ELISA). The test utilizing purified A. cantonensis antigen is reliable and reproducible for specific immunodiagnosis of human infection with A. cantonensis - thus can be applied as an additional routine test for clinical diagnostic support. Large-scale sero-epidemiological studies in endemic communities in north-east Thailand are under way to evaluate its usefulness under field conditions.
Collapse
|
27
|
Dehghannezhad A, Paknejad M, Rasaee MJ, Omidfar K, Seyyed Ebrahimi SS, Ghahremani H. Development of a nanogold-based immunochromatographic assay for detection of morphine in urine using the Amor-HK16 monoclonal antibody. Hybridoma (Larchmt) 2013; 31:411-6. [PMID: 23244319 DOI: 10.1089/hyb.2012.0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A simple, rapid competitive immunochromatography (ICG) strip test was developed to detect morphine in urine samples using a monoclonal antibody produced in-house and conjugated to gold nanoparticles. Hybridoma cells were cultured and the Amor-HK16 monoclonal antibody against morphine was obtained from the supernatant after purification by salting out and passing through a Protein G-Agarose affinity column. Morphine was obtained from morphine sulfate and a C6-hemisuccinate derivative of morphine was prepared, conjugated to bovine serum albumin, and immobilized to a nitrocellulose membrane as the test line. Goat anti-mouse antibody was used as a binder in the control line in the detection zone of the strip. Colloidal gold particles of diameter approximately 20 nm were prepared and conjugated to the monoclonal antibody. The detection limit of the test strip was found to be 2000 ng/mL of morphine in urine samples. Reliability was determined by performing the ICG test on 103 urine samples and comparing the results with those obtained by thin-layer chromatography. The sensitivity of the test was 100%, and the analysis time for the assay was approximately 5 min. The new ICG method was adequately sensitive and accurate for the rapid screening of morphine in urine.
Collapse
Affiliation(s)
- Ardeshir Dehghannezhad
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
28
|
New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens Bioelectron 2013; 43:336-47. [PMID: 23356999 DOI: 10.1016/j.bios.2012.12.045] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022]
Abstract
Gold nanoparticles (AuNPs) with optical and electrochemical distinctiveness as well as biocompatibility characteristics have proven to be powerful tools in nanomedicinal application. This review article discusses recent advances in the application of AuNPs as label in bioanalytical devices, especially electrochemical immunosensors, rapid and point-of-care (PoC) tests. A crucial assessment regarding implementation of different formats of antibodies allowing rapid and sensitive analysis of a range of analytes is also provided in this study. In addition to this, different approaches to minimize antibodies into Fab, scFv or even single-domain antibody fragments like VHHs will be reviewed. Given the high level of target specificity and affinity, such biomolecules are considered to be excellent elements for on-site or PoC analysis.
Collapse
|
29
|
Hua X, Yang J, Wang L, Fang Q, Zhang G, Liu F. Development of an enzyme linked immunosorbent assay and an immunochromatographic assay for detection of organophosphorus pesticides in different agricultural products. PLoS One 2012; 7:e53099. [PMID: 23300869 PMCID: PMC3534045 DOI: 10.1371/journal.pone.0053099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/23/2012] [Indexed: 11/30/2022] Open
Abstract
Objective Organophosphorus (OP) pesticides are considered hazardous substances because of their high toxicity to nontarget species and their persistence in the environment and agricultural products. Therefore, it is important to develop a rapid, sensitive, and economical method for detecting OP pesticides and their residues in food and the environment. Methods A broad, selective monoclonal antibody (MAb) for organophosphorus pesticides was produced. Based on the MAb, an enzyme linked immunosorbent assay (ELISA) and an immunochromatography assay (ICA) for detecting OP pesticides in different agricultural products were developed using a binding inhibition format on microtiter plates and a membrane strip, respectively. Results Under the optimized conditions, the IC50 values of the ELISA ranged from 3.7 to 162.2 ng mL–1 for the 8 OP pesticides. The matrix interferences of Apple, Chinese cabbage, and greengrocery were removed by 40-fold dilution, the recoveries from spiked samples ranged from 79.1% to 118.1%. The IC50 values of ICA for the 8 OP pesticides ranged from 11.8 to 470.4 ng mL−1. The matrix interference was removed from the Chinese cabbage and Apple samples with 5-fold dilution, and the interference was removed from the greengrocery samples with 20-fold dilution. The recoveries from the spiked samples ranged between 70.6 and 131.9%. The established ELISA and ICA were specific selectivity for the 8 OP pesticides. Conclusions The established ELISA is a sensitive screening method for the detection of OP pesticides, but the ELISA detection method depends on a laboratory platform and requires a relative long assay time and several steps operation. The established ICA is very useful as a screening method for the quantitative, semi-quantitative or qualitative detection of OP pesticides in agricultural products, and it has advantages over ELISA methods with regard to factors such as the testing procedure, testing time, and matrix interferences, among others.
Collapse
Affiliation(s)
- Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jifei Yang
- Henan Provincial Key Laboratory for Animal Immunology, Henan Academy of Agriculture Sciences, Zhengzhou, China
| | - Limin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Qingkui Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory for Animal Immunology, Henan Academy of Agriculture Sciences, Zhengzhou, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- * E-mail:
| |
Collapse
|
30
|
Low SC, Ahmad AL, Ideris N, Ng QH. Interaction of isothermal phase inversion and membrane formulation for pathogens detection in water. BIORESOURCE TECHNOLOGY 2012; 113:219-224. [PMID: 22153291 DOI: 10.1016/j.biortech.2011.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to explore the utilization of polymeric membrane for bio-sensing application in most efficient and rapid way. Customization of membrane formulation via phase separation study to modify its morphologies and properties enable the detection of different pathogens in a specific manner. Experimental findings (FESEM, through-pore distribution, porosity, capillary flow test and protein binding test) verified the predictions of faster capillary flow time and higher membrane's protein binding by the addition of cellulose acetate and nitrocellulose to the membrane casting dope, respectively. Throughout the phase separation study, the potential phase behavior was investigated, which was correlating various membrane structures to its performances for potential pathogens detection in water.
Collapse
Affiliation(s)
- S C Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, S.P.S. Penang, Malaysia.
| | | | | | | |
Collapse
|
31
|
Jin M, Shao H, Jin F, Gui W, Shi X, Wang J, Zhu G. Enhanced competitive chemiluminescent enzyme immunoassay for the trace detection of insecticide triazophos. J Food Sci 2012; 77:T99-T104. [PMID: 22490114 DOI: 10.1111/j.1750-3841.2012.02659.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct competitive chemiluminescent enzyme immunoassay (CLEIA) for triazophos was developed, which was based on the anti-THHe IgG monoclonal antibody and a heterogeneous enzyme tracer (THHu-HRP). Several components of chemiluminescent enhanced solution (CES) were optimized. The results showed that 1 mM of p-iodo-phenol, 0.625 mM of luminol, and 4 mM of H(2)O(2) had the best performance. Based on the study of CES, the influence of several factors (assay buffer, blocking substance, and solvent) on the immunoassay was investigated. The sensitivity for detection, IC(50) value was 0.87 ng/mL at a practical working concentration range between 0.04 ng/mL and 5 ng/mL and the limit of detection for triazophos was 0.063 ng/mL. The average recovery of triazophos added to lettuce, carrot, apple, water, and soil were 78.71%, 67.52%, 118.3%, 117.2%, and 122.0%, respectively. Finally, comparison between the methods of CLEIA and high-performance liquid chromatography-tandem mass spectrum (HPLC-MS/MS) was performed. The results obtained from CLEIA were in agreement with those of HPLC-MS/MS.
Collapse
Affiliation(s)
- Maojun Jin
- Key Laboratory for Agro-Products Quality and Safety, Inst. of Quality Standards, Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu YH, Xie R, Guo YR, Zhu GN, Tang FB. Comparison of homologous and heterologous formats in nanocolloidal gold-based immunoassays for parathion residue determination. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:475-483. [PMID: 22424073 DOI: 10.1080/03601234.2012.663613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effectiveness of homologous and heterologous formats in a nanocolloidal gold-based immunoassay for pesticide residue determination was investigated. Parathion, one of the most toxic organophosphorus pesticides, was used as the target analyte. One-step homologous and heterologous test strips based on a nanocolloidal gold-labeled monoclonal antibody were developed for the rapid detection of parathion residues. The results showed that the heterologous format was more effective than the homologous format, being more sensitive, more specific to parathion and more tolerant of matrix interferences. The best competitive hapten was found to have a moderate heterology and the opposite electronic distribution to the immunizing hapten. The detection limits for parathion using the preferred heterologous strip were 1 μg/L in water samples and 5 μg/kg in soil and food samples.
Collapse
Affiliation(s)
- Yi H Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, P R China
| | | | | | | | | |
Collapse
|
33
|
An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Appl Microbiol Biotechnol 2011; 94:1553-64. [PMID: 22120622 DOI: 10.1007/s00253-011-3709-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 10/23/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Organophosphorus pesticide (OP) hydrolases play key roles in the degradation and decontamination of agricultural and household OPs and in the detoxification of chemical warfare agents. In this study, an isofenphos-methyl hydrolase gene (imh) was cloned from the isocarbophos-degrading strain of Arthrobacter sp. scl-2 using the polymerase chain reaction method. Isofenphos-methyl hydrolase (Imh) showed 98% sequence identity with the isofenphos hydrolase from Arthrobacter sp. strain B-5. Imh was highly expressed in Escherichia coli BL21 (DE3), and the His(6)-tagged Imh was purified (1.7 mg/ml) with a specific activity of 14.35 U/mg for the substrate isofenphos-methyl. The molecular mass of the denatured Imh is about 44 kDa, and the isoelectric point (pI) value was estimated to be 3.4. The optimal pH and temperature for hydrolysis of isofenphos-methyl were pH 8.0 and 35 °C, respectively. The secondary structure of Imh shows that Imh is a metallo-dependent hydrolase, and it was found that Imh was completely inhibited by the metalloprotease inhibitor 1,10-phenanthroline (0.5 mM), and the catalytic activity was restored by the subsequent addition of Zn(2+). Interestingly, Imh had a relatively broader substrate specificity and was capable of hydrolyzing 12 of the tested oxon and thion OPs with the P-O-Z moiety instead of the P-S(C)-Z moiety. Furthermore, it was found that the existence of an aryl or heterocyclic group in the leaving group (Z) is also important in determining the substrate specificity. Among all the substrates hydrolyzed by Imh, it was assumed that Imh preferred P-O-Z substrates still with a phosphamide bond (P-N), such as isofenphos-methyl, isofenphos, isocarbophos, and butamifos. The newly characterized Imh has a great potential for use in the decontamination and detoxification of agricultural and household OPs and is a good candidate for the study of the catalytic mechanism and substrate specificity of OP hydrolases.
Collapse
|
34
|
Li H, Xie C, Li S, Xu K. Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf B Biointerfaces 2011; 89:175-81. [PMID: 21955508 DOI: 10.1016/j.colsurfb.2011.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/30/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
Abstract
An electrochemical sensor for pesticide triazophos (TAP) was prepared by deposition of gold nanoparticles (AuNPs) on carbon nanotubes (CNTs) modified glassy carbon (GC) electrode surface using a potentiostatic method, followed by electropolymerizing of o-hydroxyphenol at the AuNP/CNT/GC electrode surface in the presence of template triazophos via cyclic voltammetry. The electrochemical response of triazophos at the TAP-imprinted polyhydroxyphenol (PHP) modified AuNP/CNT/GC (PHP/AuNP/CNT/GC) electrode was investigated by cyclic voltammetry. The cyclic voltammetric response of triazophos at the TAP-imprinted PHP/AuNP/CNT/GC electrode was significantly higher than that at bare GC, CNT/GC, AuNP/CNT/GC, imprinted PHP/CNT/GC and non-imprinted PHP/AuNP/CNT/GC electrodes. The results indicated that the TAP-imprinted PHP/AuNP/CNT/GC electrode can effectively improve the reductive properties of triazophos and eliminate interferences of other pesticides. In addition, the AuNPs can strikingly amplify the electrochemical response of triazophos and improve the sensitivity to triazophos. Finally, the electrochemical sensor was successfully applied to determination of triazophos in vegetable samples with satisfactory results.
Collapse
Affiliation(s)
- Huaifen Li
- Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, PR China
| | | | | | | |
Collapse
|
35
|
Rapid Detection of Shellfish Major Allergen Tropomyosin Using Superparamagnetic Nanoparticle-Based Lateral Flow Immunoassay. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.311-313.436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a competitive assay format using superparamagnetic nanoparticle-based lateral flow immunoassay (LFIA) was developed for rapid, quantitative detection of shellfish major allergen tropomyosin (Tm). Sartorius CN140 nitrocellulose membrane and 0.05mg/mL Tm immobilized in the test line (T line) were optimized in order to improve the performance of the LFIA system. Calibration curves for Tm under PBS-T diluents and carp muscle extraction diluents were established. Limit of detection (LOD) for Tm calibrated by carp muscle matrix was 12.4ng/mL with a work range of 0.01 to 20μg/mL. According to magnetic signals change with the time of sample flowing on the strip, the qualitative time of the LFIA was about 10min, while the quantitative time of the LFIA was about 25min. 30 food species were detected separately by the LFIA and Western blot method to evaluate the specificity of the LFIA. Overall relative agreement of the two methods was 96.7% (29/30). Moreover, intra- and inter-assay precisions of the LFIA for Tm detection were <10.20% and <12.34%, respectively. The average recovery range in different food matrices was 80.3~111.8%, within a reasonable range. Our data confirmed that the superparamagnetic nanoparticle-based LFIA method developed in this study is rapid, simple, high specificity and capable of quantitative test. Consequently, the LFIA has the potential application in the field of point-of-care test of shellfish major allergen Tm.
Collapse
|
36
|
Ionic liquid-dispersive liquid–liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection. J Chromatogr A 2011; 1218:4808-16. [DOI: 10.1016/j.chroma.2010.11.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 11/21/2022]
|
37
|
Xu ZL, Zeng DP, Yang JY, Shen YD, Beier RC, Lei HT, Wang H, Sun YM. Monoclonal antibody-based broad-specificity immunoassay for monitoring organophosphorus pesticides in environmental water samples. ACTA ACUST UNITED AC 2011; 13:3040-8. [DOI: 10.1039/c1em10331h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Molecular imprinting method for on-line enrichment and chemiluminescent detection of the organophosphate pesticide triazophos. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0447-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
|
40
|
Blažková M, Mičková-Holubová B, Rauch P, Fukal L. Immunochromatographic colloidal carbon-based assay for detection of methiocarb in surface water. Biosens Bioelectron 2009; 25:753-8. [DOI: 10.1016/j.bios.2009.08.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/13/2009] [Accepted: 08/15/2009] [Indexed: 11/28/2022]
|
41
|
Guo YR, Liu SY, Gui WJ, Zhu GN. Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem 2009; 389:32-9. [DOI: 10.1016/j.ab.2009.03.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/05/2009] [Accepted: 03/14/2009] [Indexed: 11/28/2022]
|
42
|
Ahmad A, Low S, Abd Shukor S, Ismail A, Sunarti A. Development of lateral flow membranes for immunoassay separation. DESALINATION AND WATER TREATMENT 2009; 5:99-105. [DOI: 10.5004/dwt.2009.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Fabrication of photometric dip-strip test systems for detection of β(1→3)-d-glucan using crude β(1→3)-d-glucanase from sprouts of Vigna aconitifolia. Biosens Bioelectron 2009; 24:2566-73. [DOI: 10.1016/j.bios.2009.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
|
44
|
Colloidal Nanogold-Based Immunochromatographic Strip Test for the Detection of Digoxin Toxicity. Appl Biochem Biotechnol 2009; 160:843-55. [DOI: 10.1007/s12010-009-8535-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/20/2009] [Indexed: 11/26/2022]
|
45
|
Zhao Y, Zhang G, Liu Q, Teng M, Yang J, Wang J. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:12138-12142. [PMID: 19053394 DOI: 10.1021/jf802648z] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A rapid immunochromatographic lateral flow test strip of competitive format has been developed using a gold-conjugated monoclonal antibody for the specific determination of enrofloxacin (ENR) residues in chicken muscles. For this purpose, a specific monoclonal antibody (mAb) for ENR was generated and characterized. The mAb showed negligible cross-reactivity with other related compounds. Using ENR standards prepared in chicken muscle extracts from 0 to 24.3 ng/mL (microg/kg), the method indicated that the detection limit of the test strip, as measured in a strip scanner, was as low as 0.138 microg/kg of ENR and the half-maximal inhibition concentration (IC(50)) was 0.935 microg/kg. For samples spiked at 10, 20, and 30 microg/kg, the recovery was between 85.3 and 96.1% and the coefficient of variation [CV (%)] was between 4.5 and 7.91%. Parallel analysis of muscle samples from chickens fed ENR showed good comparable results obtained from the test strip and LC-MS. Each test requires 5-10 min. The data indicate that the method has high sensitivity, specificity, and the advantages of simplicity and speed of performance. Therefore, the test strip provides a useful screening method for quantitative, semiquantitative, or qualitative detection of ENR residues in chicken muscles.
Collapse
Affiliation(s)
- Yinli Zhao
- The Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | | | | | | | | | | |
Collapse
|