1
|
Siddika MA, Oi H, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Structural Expansion of Catalytic RNA Nanostructures through Oligomerization of a Cyclic Trimer of Engineered Ribozymes. Molecules 2023; 28:6465. [PMID: 37764241 PMCID: PMC10535472 DOI: 10.3390/molecules28186465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The multimolecular assembly of three-dimensionally structured proteins forms their quaternary structures, some of which have high geometric symmetry. The size and complexity of protein quaternary structures often increase in a hierarchical manner, with simpler, smaller structures serving as units for larger quaternary structures. In this study, we exploited oligomerization of a ribozyme cyclic trimer to achieve larger ribozyme-based RNA assembly. By installing kissing loop (KL) interacting units to one-, two-, or three-unit RNA molecules in the ribozyme trimer, we constructed dimers, open-chain oligomers, and branched oligomers of ribozyme trimer units. One type of open-chain oligomer preferentially formed a closed tetramer containing 12 component RNAs to provide 12 ribozyme units. We also observed large assembly of ribozyme trimers, which reached 1000 nm in size.
Collapse
Affiliation(s)
- Mst. Ayesha Siddika
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
| | - Hiroki Oi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8501, Kyoto, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita 564-8680, Osaka, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Yoshiya Ikawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| |
Collapse
|
2
|
Siddika MA, Yamada T, Aoyama R, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Catalytic RNA Oligomers Formed by Co-Oligomerization of a Pair of Bimolecular RNase P Ribozymes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238298. [PMID: 36500390 PMCID: PMC9740620 DOI: 10.3390/molecules27238298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Naturally occurring ribozymes with a modular architecture are promising platforms for construction of RNA nanostructures because modular redesign enables their oligomerization. The resulting RNA nanostructures can exhibit the catalytic function of the parent ribozyme in an assembly dependent manner. In this study, we designed and constructed open-form oligomers of a bimolecular form of an RNase P ribozyme. The ribozyme oligomers were analyzed biochemically and by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Mst. Ayesha Siddika
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Takahiro Yamada
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Risako Aoyama
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Kumi Hidaka
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Osaka 564-8680, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Correspondence:
| |
Collapse
|
3
|
Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers. J Biosci Bioeng 2022; 134:195-202. [PMID: 35810135 DOI: 10.1016/j.jbiosc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Naturally occurring ribozymes with defined three-dimensional (3D) structures serve as promising platforms for the design and construction of artificial RNA nanostructures. We constructed a hexameric ribozyme nanostructure by face-to-face dimerization of a pair of triangular ribozyme trimers, unit RNAs of which were derived from the Tetrahymena group I ribozyme. In this study, we have expanded the dimerization strategy to a square-shaped ribozyme tetramer by introducing four pillar units. The resulting box-shaped nanostructures, which contained eight ribozyme units, can be assembled from either four or two components of their unit RNAs.
Collapse
|
4
|
Yu K, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. A hexameric ribozyme nanostructure formed by double-decker assembly of a pair of triangular ribozyme trimers. Chembiochem 2022; 23:e202100573. [PMID: 35088928 DOI: 10.1002/cbic.202100573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022]
Abstract
The modular architecture of naturally occurring ribozymes makes them a promising class of structural platforms to design and assemble three-dimensional (3D) RNA nanostructures, into which the catalytic ability of the platform ribozyme can be installed. We have constructed and analyzed RNA nanostructures with polygonal-shaped (closed) ribozyme oligomers by assembling unit RNAs derived from the Tetrahymena group I intron with a typical modular architecture. In this study, we dimerized ribozyme trimers with a triangular shape by introducing three pillar units. The resulting double-decker nanostructures containing six ribozyme units were characterized biochemically and their structures were observed by atomic force microscopy. The double-decker hexamers exhibited higher catalytic activity than the parent ribozyme trimers.
Collapse
Affiliation(s)
- Kai Yu
- University of Toyama: Toyama Daigaku, Department of Chemistry, JAPAN
| | - Kumi Hidaka
- Kyoto University: Kyoto Daigaku, Department of Chemistry, JAPAN
| | | | | | | | - Yoshiya Ikawa
- University of Toyama, Chemistry, Gofuku 3190, 930-8555, Toyama, JAPAN
| |
Collapse
|
5
|
Li B, Shen H, Deng M, Gu FL. Second-Order Nonlinear Optics Response of the Boron-Dipyrromethenes-Based Mislinked Expanded Porphyrins: Revealing the Role of the -BF 2 Group. J Phys Chem Lett 2022; 13:412-418. [PMID: 34989589 DOI: 10.1021/acs.jpclett.1c03850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, the mislinked expanded porphyrins singly (labeled A) and doubly (labeled B) neo-confused [22]smaragdyrin, the boron-dipyrromethenes-based mislinked expanded porphyrins singly (labeled C) and doubly (labeled D) neo-confused [22]smaragdyrin, where both C and D include a -BF2 group, are chosen to serve as the study objects, and theoretical calculations are carried out to study the role of the -BF2 group in the second-order nonlinear optics (NLO) behaviors. Results highlighted that the -BF2 group plays an important role for the second-order behaviors in mislinked expanded porphyrins; namely, embedding the -BF2 group well enhanced the hyper-Rayleigh scattering (HRS) value {βHRS(0;0,0)}, C{βHRS(0;0,0)}A{βHRS(0;0,0)} = 2.0 and D{βHRS(0;0,0)}B{βHRS(0;0,0)} = 2.9, main owning to the fact that installing -BF2 increases the electron delocalization degree and decreases the excited energy of the crucial excited state.
Collapse
Affiliation(s)
- Bo Li
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou 550018, People's Republic of China
| | - Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou 550018, People's Republic of China
| | - Mingsen Deng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, Guizhou 550018, People's Republic of China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
6
|
Hatamimoslehabadi M, Frenette M, Bag S, Gilligan GE, La J, Yelleswarapu C, Rochford J. Characterization of Triphenylamine and Ferrocenyl Donor-π-donor Vinyl BODIPY Derivatives as Photoacoustic Contrast Agents. Photochem Photobiol 2022; 98:62-72. [PMID: 33811760 DOI: 10.1111/php.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
The photophysical and electrochemical properties for a series of BODIPY dyes with incremental 3- and 3,5-vinyl conjugation, as well as incremental electron-donating groups (anisole < triphenylamine < ferrocenyl), are presented. Insight into the influence of each vinyl-conjugated electron-donating group on both vis-NIR absorption and fluorescence emission properties is provided. These trends are further corroborated by density functional theory computational analysis. Two of this series containing the 3,5-bis(vinyltriphenylamine) and 3,5-bis(vinylferrocenyl) substituents exhibit significant absorption cross sections in the biological transparency window justifying further investigation of their photoacoustic emission properties via both optical photoacoustic z-scan and photoacoustic tomography experiments. Both the 3,5-bis(vinyltriphenylamine) and 3,5-bis(vinylferrocenyl) substituted BODIPY dyes exhibit quantitative photoacoustic quantum yields. Relative to the commercially available methylene blue and indocyanine green molecular photoacoustic contrast agents, the 3,5-bis(vinyltriphenylamine)-derived BODIPY exhibits the greatest photoacoustic emission and contrast upon excited-state absorption at 685 nm excitation at a low power laser fluence (<20 mJ cm-2 ).
Collapse
Affiliation(s)
| | - Mathieu Frenette
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Seema Bag
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Gerald E Gilligan
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | | | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
7
|
Mori Y, Oi H, Suzuki Y, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Flexible Assembly of Engineered Tetrahymena Ribozymes Forming Polygonal RNA Nanostructures with Catalytic Ability. Chembiochem 2021; 22:2168-2176. [PMID: 33876531 DOI: 10.1002/cbic.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Indexed: 11/11/2022]
Abstract
Ribozymes with modular architecture constitute an attractive class of structural platforms for design and construction of nucleic acid nanostructures with biological functions. Through modular engineering of the Tetrahymena ribozyme, we have designed unit RNAs (L-RNAs), assembly of which formed ribozyme-based closed trimers and closed tetramers. Their catalytic activity was dependent on oligomer formation. In this study, the structural variety of L-RNA oligomers was extended by tuning their structural elements, yielding closed pentamers and closed hexamers. Their assembly properties were analyzed by electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Yuki Mori
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Hiroki Oi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, 606-8502, Kyoto, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, 930-8555, Toyama, Japan
| |
Collapse
|
8
|
An RNA Triangle with Six Ribozyme Units Can Promote a Trans-Splicing Reaction through Trimerization of Unit Ribozyme Dimers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribozymes are catalytic RNAs that are attractive platforms for the construction of nanoscale objects with biological functions. We designed a dimeric form of the Tetrahymena group I ribozyme as a unit structure in which two ribozymes were connected in a tail-to-tail manner with a linker element. We introduced a kink-turn motif as a bent linker element of the ribozyme dimer to design a closed trimer with a triangular shape. The oligomeric states of the resulting ribozyme dimers (kUrds) were analyzed biochemically and observed directly by atomic force microscopy (AFM). Formation of kUrd oligomers also triggered trans-splicing reactions, which could be monitored with a reporter system to yield a fluorescent RNA aptamer as the trans-splicing product.
Collapse
|
9
|
Effects of Substituents on Photophysical and CO-Photoreleasing Properties of 2,6-Substituted meso-Carboxy BODIPY Derivatives. CHEMISTRY-SWITZERLAND 2021. [DOI: 10.3390/chemistry3010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon monoxide (CO) is an endogenously produced signaling molecule involved in the control of a vast array of physiological processes. One of the strategies to administer therapeutic amounts of CO is the precise spatial and temporal control over its release from photoactivatable CO-releasing molecules (photoCORMs). Here we present the synthesis and photophysical and photochemical properties of a small library of meso-carboxy BODIPY derivatives bearing different substituents at positions 2 and 6. We show that the nature of substituents has a major impact on both their photophysics and the efficiency of CO photorelease. CO was found to be efficiently released from π-extended 2,6-arylethynyl BODIPY derivatives possessing absorption spectra shifted to a more biologically desirable wavelength range. Selected photoCORMs were subjected to in vitro experiments that did not reveal any serious toxic effects, suggesting their potential for further biological research.
Collapse
|
10
|
Kiyooka R, Akagi J, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures. J Biosci Bioeng 2020; 130:253-259. [PMID: 32451246 DOI: 10.1016/j.jbiosc.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Ribozymes with modular structures are attractive platforms for the construction of nanoscale RNA objects with biological functions. We designed group I ribozyme dimers as unit ribozyme dimers (Urds), which self-assembled to form their polymeric states and also oligomeric states with defined numbers of Urds. Assembly of Urds yielded catalytic ability of a pair of distinct ribozyme units to cleave two distinct substrates. The morphologies of the assembled ribozyme structures were observed directly by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Ryuji Kiyooka
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Junya Akagi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
11
|
Rahman MS, Matsumura S, Ikawa Y. Effects of external molecular factors on adaptation of bacterial RNase P ribozymes to thermophilic conditions. Biochem Biophys Res Commun 2020; 523:342-347. [DOI: 10.1016/j.bbrc.2019.12.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
|
12
|
Rahman MS, Gulshan MA, Matsumura S, Ikawa Y. Polyethylene glycol molecular crowders enhance the catalytic ability of bimolecular bacterial RNase P ribozymes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:715-729. [PMID: 32039645 DOI: 10.1080/15257770.2019.1687909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The modular structure of bacterial ribonuclease P (RNase P) ribozymes, which recognize tertiary structures of precursor tRNAs (pre-tRNAs) to cleave their 5' leader sequence, can be dissected physically into the two structured domain RNAs (S-domain and C-domain). Separately prepared S-domain RNA and C-domain RNA assemble to form bimolecular forms of RNase P ribozymes. We analyzed the effects of polyethylene glycols (PEGs) on pre-tRNA cleavage catalyzed by bimolecular RNase P ribozymes to examine the effects of molecular crowding on the reaction. PEG molecular crowders significantly enhanced the activities of bimolecular RNase P ribozymes, some of which were hardly active without PEGs.
Collapse
Affiliation(s)
- Md Sohanur Rahman
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Mst Ara Gulshan
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.,Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, Japan
| |
Collapse
|
13
|
Tsuruga R, Uehara N, Suzuki Y, Furuta H, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA–RNA interface between two structural modules. J Biosci Bioeng 2019; 128:410-415. [DOI: 10.1016/j.jbiosc.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
|
14
|
Nozawa Y, Hagihara M, Rahman MS, Matsumura S, Ikawa Y. Rational Design of an Orthogonal Pair of Bimolecular RNase P Ribozymes through Heterologous Assembly of Their Modular Domains. BIOLOGY 2019; 8:biology8030065. [PMID: 31480450 PMCID: PMC6783828 DOI: 10.3390/biology8030065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
The modular structural domains of multidomain RNA enzymes can often be dissected into separate domain RNAs and their noncovalent assembly can often reconstitute active enzymes. These properties are important to understand their basic characteristics and are useful for their application to RNA-based nanostructures. Bimolecular forms of bacterial RNase P ribozymes consisting of S-domain and C-domain RNAs are attractive as platforms for catalytic RNA nanostructures, but their S-domain/C-domain assembly was not optimized for this purpose. Through analysis and engineering of bimolecular forms of the two bacterial RNase P ribozymes, we constructed a chimeric ribozyme with improved catalytic ability and S-domain/C-domain assembly and developed a pair of bimolecular RNase P ribozymes the assembly of which was considerably orthogonal to each other.
Collapse
Affiliation(s)
- Yuri Nozawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Megumi Hagihara
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
15
|
Tsuji G, Hattori T, Kato M, Hakamata W, Inoue H, Naito M, Kurihara M, Demizu Y, Shoda T. Design and synthesis of cell-permeable fluorescent nitrilotriacetic acid derivatives. Bioorg Med Chem 2018; 26:5494-5498. [PMID: 30293794 DOI: 10.1016/j.bmc.2018.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/26/2022]
Abstract
Fluorescence labeling of the target molecules using a small molecule-based probe is superior than a method using genetically expressed green fluorescence protein (GFP) in terms of convenience in its preparation and functionalization. Fluorophore-nitrilotriacetic acid (NTA) conjugates with several ester protecting groups were synthesized and evaluated for their cell membrane permeability by fluorescence microscopy analysis. One of the derivatives, acetoxymethyl (AM)-protected NTA conjugate is hydrolyzed, resulting in intracellular accumulation, thus providing localized fluorescence intensity in cells. This modification is expected as an effective method for converting a non-cell membrane permeable NTA-BODIPY conjugates to a cell membrane permeable derivatives.
Collapse
Affiliation(s)
- Genichiro Tsuji
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| | - Takayuki Hattori
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Masashi Kato
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan; School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mikihiko Naito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Masaaki Kurihara
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takuji Shoda
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
16
|
Rahman MM, Matsumura S, Ikawa Y. Oligomerization of a Bimolecular Ribozyme Modestly Rescues its Structural Defects that Disturb Interdomain Assembly to Form the Catalytic Site. J Mol Evol 2018; 86:431-442. [DOI: 10.1007/s00239-018-9862-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
|
17
|
Artificial RNA Motifs Expand the Programmable Assembly between RNA Modules of a Bimolecular Ribozyme Leading to Application to RNA Nanostructure Design. BIOLOGY 2017; 6:biology6040037. [PMID: 29084145 PMCID: PMC5745442 DOI: 10.3390/biology6040037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 01/10/2023]
Abstract
A bimolecular ribozyme consisting of a core ribozyme (ΔP5 RNA) and an activator module (P5abc RNA) has been used as a platform to design assembled RNA nanostructures. The tight and specific assembly between the P5abc and ΔP5 modules depends on two sets of intermodule interactions. The interface between P5abc and ΔP5 must be controlled when designing RNA nanostructures. To expand the repertoire of molecular recognition in the P5abc/ΔP5 interface, we modified the interface by replacing the parent tertiary interactions in the interface with artificial interactions. The engineered P5abc/ΔP5 interfaces were characterized biochemically to identify those suitable for nanostructure design. The new interfaces were used to construct 2D-square and 1D-array RNA nanostructures.
Collapse
|
18
|
Tanaka T, Hirata Y, Tominaga Y, Furuta H, Matsumura S, Ikawa Y. Heterodimerization of Group I Ribozymes Enabling Exon Recombination through Pairs of Cooperative trans-Splicing Reactions. Chembiochem 2017; 18:1659-1667. [PMID: 28556398 DOI: 10.1002/cbic.201700053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 12/31/2022]
Abstract
Group I (GI) self-splicing ribozymes are attractive tools for biotechnology and synthetic biology. Several trans-splicing and related reactions based on GI ribozymes have been developed for the purpose of recombining their target mRNA sequences. By combining trans-splicing systems with rational modular engineering of GI ribozymes it was possible to achieve more complex editing of target RNA sequences. In this study we have developed a cooperative trans-splicing system through rational modular engineering with use of dimeric GI ribozymes derived from the Tetrahymena group I intron ribozyme. The resulting pairs of ribozymes exhibited catalytic activity depending on their selective dimerization. Rational modular redesign as performed in this study would facilitate the development of sophisticated regulation of double or multiple trans-splicing reactions in a cooperative manner.
Collapse
Affiliation(s)
- Takahiro Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yusuke Hirata
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Yuto Tominaga
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| |
Collapse
|
19
|
Tanaka T, Ikawa Y, Matsumura S. Rational Engineering of a Modular Group I Ribozyme to Control Its Activity by Self-Dimerization. Methods Mol Biol 2017; 1632:325-340. [PMID: 28730449 DOI: 10.1007/978-1-4939-7138-1_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We designed and constructed a dimer of the Tetrahymena group I ribozyme the activity of which is regulated by self-dimerization. This dimer was rationally designed by utilizing the P5abc and ΔP5abc domains as large RNA motifs. This strategy enabled us to install large ribozyme functions into an RNA structure. This is a step toward expanding the field of RNA nanotechnology beyond the limitation of using only relatively small functional motifs. Self-dimerization can also be rationally programmed by modular engineering of RNA interaction motifs. In this chapter, we present the procedure for the rational design and construction of large ribozyme domains based on RNA tertiary structures. We also describe the electrophoresis mobility shift assay (EMS) and several ribozyme activity assays to confirm the ribozyme function and its regulation. We have succeeded in construction of tecto-GIRz.
Collapse
Affiliation(s)
- Takahiro Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiya Ikawa
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan.
| |
Collapse
|
20
|
Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of aGroup I Intron from Structured RNAs. BIOLOGY 2016; 5:biology5040043. [PMID: 27869660 PMCID: PMC5192423 DOI: 10.3390/biology5040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022]
Abstract
Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D) structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA) as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure.
Collapse
|
21
|
Tanaka T, Matsumura S, Furuta H, Ikawa Y. Tecto-GIRz: Engineered Group I Ribozyme the Catalytic Ability of Which Can Be Controlled by Self-Dimerization. Chembiochem 2016; 17:1448-55. [DOI: 10.1002/cbic.201600190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Takahiro Tanaka
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Kyushu University; Moto-oka 744 Nishi-ku Fukuoka 819-0395 Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry; Graduate School of Science and Engineering; University of Toyama; Gofuku 3190 Toyama 930-8555 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Kyushu University; Moto-oka 744 Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiya Ikawa
- Department of Chemistry; Graduate School of Science and Engineering; University of Toyama; Gofuku 3190 Toyama 930-8555 Japan
| |
Collapse
|
22
|
Tobin JM, Liu J, Hayes H, Demleitner M, Ellis D, Arrighi V, Xu Z, Vilela F. BODIPY-based conjugated microporous polymers as reusable heterogeneous photosensitisers in a photochemical flow reactor. Polym Chem 2016. [DOI: 10.1039/c6py01393g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Production of singlet oxygen at 530 nm in a flow reactor using novel BODIPY-based polymers as heterogeneous photosensitisers.
Collapse
Affiliation(s)
- J. M. Tobin
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - J. Liu
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - H. Hayes
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - M. Demleitner
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - D. Ellis
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - V. Arrighi
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Z. Xu
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- China
| | - F. Vilela
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|
23
|
Zhao H, Liao J, Peng M, Wang Y, Zhou W, Li B, Shen S, Xie Z. Synthesis of fluorene-based di-BODIPY dyes containing different aromatic linkers and their properties. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Dick JE, Poirel A, Ziessel R, Bard AJ. Electrochemistry, Electrogenerated Chemiluminescence, and Electropolymerization of Oligothienyl-BODIPY Derivatives. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Wang Y, Liao J, Wang B, Chen H, Zhao H, Peng M, Fan S. Synthesis and Properties of Novel Borondipyrromethene (BODIPY)-Tethered Triphenylamine Conjugates. Aust J Chem 2015. [DOI: 10.1071/ch15026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of novel donor–acceptor type borondipyrromethene (BODIPY)-tethered triphenylamine conjugates (BDP4–8) containing one or two BODIPY cores attached to a triphenylamine scaffold at the 4- or 4,4′- positions were successfully synthesised via a mild and effective protocol. Their photophysical and electrochemical properties were investigated. The absorption spectra indicated that the meso-substituted BODIPY with triphenylamine did not give rise to an intense intramolecular charge transfer (ICT) and did not effectively extend the conjugated length compared with substitution at the 2,6- and 3,5-positions as previously reported. It is worth noticing that the asymmetric mono-BODIPY-tethered triphenylamine conjugates (BDP5, BDP7) showed an electronic distribution imbalance due to the special 3D propeller shape of triphenylamine resulting in twisted molecular space configurations. In contrast, the symmetric bis-BODIPY-tethered triphenylamine conjugates (BDP4, BDP6, and BDP8) exhibited a balanced electronic distribution. The photoluminescence spectra of these conjugates exhibited significant Stokes shifts (5300–6700 cm–1), which caused fluorescence emission spectra in near-infrared regions. Cyclic voltammograms reveal that the asymmetric mono-BODIPY-tethered triphenylamine conjugates (BDP5, BDP7) have higher LUMO energy levels and lower HOMO energy levels, thus resulting in larger bandgaps than the bis-BODIPY-tethered triphenylamine ones.
Collapse
|
26
|
Gutiérrez-Ramos BD, Bañuelos J, Arbeloa T, Arbeloa IL, González-Navarro PE, Wrobel K, Cerdán L, García-Moreno I, Costela A, Peña-Cabrera E. Straightforward Synthetic Protocol for the Introduction of Stabilized C Nucleophiles in the BODIPY Core for Advanced Sensing and Photonic Applications. Chemistry 2014; 21:1755-64. [DOI: 10.1002/chem.201405233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 12/22/2022]
|
27
|
Barba‐Bon A, Costero AM, Gil S, Harriman A, Sancenón F. Highly Selective Detection of Nerve‐Agent Simulants with BODIPY Dyes. Chemistry 2014; 20:6339-47. [DOI: 10.1002/chem.201304475] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Andrea Barba‐Bon
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidad de Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia (Spain), Fax: (+34) 963543831
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)
| | - Ana M. Costero
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidad de Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia (Spain), Fax: (+34) 963543831
| | - Salvador Gil
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidad de Valencia, Doctor Moliner 50, 46100 Burjassot, Valencia (Spain), Fax: (+34) 963543831
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU (UK), Fax: (+44) 1912228660
| | - Félix Sancenón
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)
| |
Collapse
|
28
|
Tanaka T, Furuta H, Ikawa Y. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme. J Biosci Bioeng 2014; 117:407-12. [DOI: 10.1016/j.jbiosc.2013.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
|
29
|
Barba-Bon A, Calabuig L, Costero AM, Gil S, Martínez-Máñez R, Sancenón F. Off–on BODIPY-based chemosensors for selective detection of Al3+ and Cr3+versus Fe3+ in aqueous media. RSC Adv 2014. [DOI: 10.1039/c3ra46845c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Off–on two channel BODIPY-based chemosensors, highly sensitive for trivalent cations. Selective sensing of Al3+ and Cr3+versus Fe3+ has been achieved.
Collapse
Affiliation(s)
- Andrea Barba-Bon
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia
- Spain
- Departamento de Química
- Universidad Politécnica de Valencia
| | - Laura Calabuig
- Departamento de Química Orgánica
- Universitat de València
- Burjassot, Spain
| | - Ana M. Costero
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia
- Spain
- Departamento de Química Orgánica
- Universitat de València
| | - Salvador Gil
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia
- Spain
- Departamento de Química Orgánica
- Universitat de València
| | - Ramón Martínez-Máñez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia
- Spain
- Departamento de Química
- Universidad Politécnica de Valencia
| | - Félix Sancenón
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia
- Spain
- Departamento de Química
- Universidad Politécnica de Valencia
| |
Collapse
|
30
|
Lakshmi V, Ravikanth M. Synthesis of conjugated BODIPYs via the Wittig reaction. J Org Chem 2013; 78:4993-5000. [PMID: 23627718 DOI: 10.1021/jo4006969] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Wittig reaction was employed to synthesize conjugated BODIPYs in high yields by treating formylated BODIPYs with alkyl/aryl ylides under simple room temperature conditions. Treatment of 3,5-diformyl BODIPYs or α-formyl 3-pyrrolyl BODIPY with different alkyl/aryl ylides in CH2Cl2 at room temperature for 2 h followed by straightforward column chromatographic purification on silica afforded conjugated BODIPYs in ~65-90% yields. This is an alternate method to Knoevenagel and Heck reactions which have been used to synthesize such conjugated BODIPYs. The method works very efficiently, and we prepared 12 substituted BODIPYs including cholesterol-substituted BODIPYs to demonstrate the versatility of the reaction. The spectral, electrochemical, and fluorescence properties of these conjugated BODIPYs are also described.
Collapse
|
31
|
Fixation and accumulation of thermotolerant catalytic competence of a pair of ligase ribozymes through complex formation and cross ligation. J Mol Evol 2013; 76:48-58. [PMID: 23288433 DOI: 10.1007/s00239-012-9536-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In the early stages of the hypothetical RNA world, some primitive RNA catalysts (ribozymes) may have emerged through self-assembly of short RNA oligomers. Although they may be unstable against temperature fluctuations and other environmental changes, ligase ribozymes (ribozymes with RNA strand-joining activity) may resolve structural instability of self-assembling RNAs by converting them to the corresponding unimolecular formats. To investigate this possibility, we constructed a model system using a cross-ligation system composed of a pair of self-assembling ligase ribozymes. Their abilities to act as catalysts, substrates, and a cross-ligation system were analyzed with or without thermal pretreatment before the reactions. A pair of self-assembling ligase ribozymes, each of which can form multiple conformations, demonstrated that thermotolerance was acquired and accumulated through complex-formation that stabilized the active forms of the bimolecular ribozymes and also cross-ligation that produced the unimolecular ribozymes.
Collapse
|
32
|
Yamashita K, Tanaka T, Furuta H, Ikawa Y. TectoRNP: self-assembling RNAs with peptide recognition motifs as templates for chemical peptide ligation. J Pept Sci 2012; 18:635-42. [DOI: 10.1002/psc.2444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/07/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Kohei Yamashita
- Department of Chemistry and Biochemistry; Graduate School of Engineering, Kyushu University; Moto-oka 744, Nishi-ku; Fukuoka; 819-0395; Japan
| | - Takahiro Tanaka
- Department of Chemistry and Biochemistry; Graduate School of Engineering, Kyushu University; Moto-oka 744, Nishi-ku; Fukuoka; 819-0395; Japan
| | | | | |
Collapse
|
33
|
A two-piece derivative of a group I intron RNA as a platform for designing self-assembling RNA templates to promote Peptide ligation. J Nucleic Acids 2012; 2012:305867. [PMID: 22966423 PMCID: PMC3432377 DOI: 10.1155/2012/305867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022] Open
Abstract
Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA) as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.
Collapse
|
34
|
Cortizo-Lacalle D, Howells CT, Gambino S, Vilela F, Vobecka Z, Findlay NJ, Inigo AR, Thomson SAJ, Skabara PJ, Samuel IDW. BODIPY-based conjugated polymers for broadband light sensing and harvesting applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32374e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Fujita Y, Tanaka T, Furuta H, Ikawa Y. Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch. J Biosci Bioeng 2011; 113:141-5. [PMID: 22074990 DOI: 10.1016/j.jbiosc.2011.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022]
Abstract
Riboswitches are a class of structural RNAs that regulate transcription and translation through specific recognition of small molecules. Riboswitches are attractive not only as drug targets for novel antibiotics but also as modular tools for controlling gene expression. Sequence comparison of a class of riboswitches that sense cyclic di-GMP (type-I c-di-GMP riboswitches) revealed that this type of riboswitch frequently shows a GAAA loop/receptor interaction between P1 and P3 elements. In the crystal structures of a type-I c-di-GMP riboswitch from Vibrio cholerae (the Vc2 riboswitch), the GNRA loop/receptor interaction assembled P2 and P3 stems to organize a ligand-binding pocket. In this study, the functional importance of the GAAA loop-receptor interaction in the Vc2 riboswitch was examined. A series of variant Vc2 riboswitches with mutations in the GAAA loop/receptor interaction were assayed for their switching abilities. In mutants with mutations in the P2 GAAA loop, expression of the reporter gene was reduced to approximately 40% - 60% of that in the wild-type. However, mutants in which the P3 receptor motif was substituted with base pairs were as active as the wild-type. These results suggested that the GAAA loop/receptor interaction does not simply establish the RNA 3D structure but docking of P2 GAAA loop reduces the flexibility of the GAAA receptor motif in the P3 element. This mechanism was supported by a variant riboswitch bearing a theophylline aptamer module in P3 the structural rigidity of which could be modulated by the small molecule theophylline.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | |
Collapse
|
36
|
Awuah SG, Polreis J, Biradar V, You Y. Singlet oxygen generation by novel NIR BODIPY dyes. Org Lett 2011; 13:3884-7. [PMID: 21732590 DOI: 10.1021/ol2014076] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Five novel near-infrared BODIPY dyes were prepared for improved singlet oxygen generation using thiophene and bromine. Theoretical, optical, photostable, and singlet oxygen generation characteristics of these dyes were assessed. Predicted excitation energies by TDDFT calculations were in good agreement (ΔE ≈ 0.06 eV) with experimental data. All five dyes showed both excitation and emission in the NIR range. In particular, two dyes having sulfur and bromine atoms showed efficient singlet oxygen generation with high photostability.
Collapse
Affiliation(s)
- Samuel G Awuah
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, USA
| | | | | | | |
Collapse
|
37
|
Wang TP, Chiou YJ, Chen Y, Wang EC, Hwang LC, Chen BH, Chen YH, Ko CH. Versatile phosphoramidation reactions for nucleic acid conjugations with peptides, proteins, chromophores, and biotin derivatives. Bioconjug Chem 2010; 21:1642-55. [PMID: 20690641 DOI: 10.1021/bc1001505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemical conjugations of nucleic acids with macromolecules or small molecules are common approaches to study nucleic acids in chemistry and biology and to exploit nucleic acids for medical applications. The conjugation of nucleic acids such as oligonucleotides with peptides is especially useful to circumvent cell delivery and specificity problems of oligonucleotides as therapeutic agents. However, current approaches are limited and inefficient in their ability to afford peptide-oligonucleotide conjugates (POCs). Here, we report an effective and reproducible approach to prepare POCs and other nucleic acid conjugates based on a newly developed nucleic acid phosphoramidation method. The development of a new nucleic acid phosphoramidation reaction was achieved by our successful synthesis of a novel amine-containing biotin derivative used to systematically optimize the reactions. The improved phosphoramidation reactions dramatically increased yields of nucleic acid-biotin conjugates up to 80% after 3 h reaction. Any nucleic acids with a terminal phosphate group are suitable reactants in phosphoramidation reactions to conjugate with amine-containing molecules such as biotin and fluorescein derivatives, proteins, and, most importantly, peptides to enable the synthesis of POCs for therapeutic applications. Polymerase chain reactions (PCRs) to study incorporation of biotin or fluorescein-tagged DNA primers into the reaction products demonstrated that appropriate controls of nucleic acid phosphoramidation reactions incur minimum adverse effects on inherited base-pairing characteristics of nucleotides in nucleic acids. The phosphoramidation approach preserves the integrity of hybridization specificity in nucleic acids when preparing POCs. By retaining integrity of the nucleic acids, their effectiveness as therapeutic reagents for gene silencing, gene therapy, and RNA interference is ensured. The potential for POC use was demonstrated by two-step phosphoramidation reactions to successfully synthesize nucleic acid-tetraglycine conjugates. In addition, phosphoramidation reactions provided a facile approach to prepare nucleic acid-BSA conjugates with good yields. In summary, the new approach to phosphoramidation reactions offers a universal method to prepare POCs and other nucleic acid conjugates with high yields in aqueous solutions. The methods can be easily adapted to typical chemistry or biology laboratory setups which will expedite the applications of POCs for basic research and medicine.
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu JY, El-Khouly ME, Fukuzumi S, Ng DKP. Photoinduced Electron Transfer in a Distyryl BODIPY-Fullerene Dyad. Chem Asian J 2010; 6:174-9. [DOI: 10.1002/asia.201000537] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Filarowski A, Kluba M, Cieślik-Boczula K, Koll A, Kochel A, Pandey L, De Borggraeve WM, Van der Auweraer M, Catalán J, Boens N. Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes. Photochem Photobiol Sci 2010; 9:996-1008. [DOI: 10.1039/c0pp00035c] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Kashiwagi N, Yamashita K, Furuta H, Ikawa Y. Designed RNAs with Two Peptide-Binding Units as Artificial Templates for Native Chemical Ligation of RNA-Binding Peptides. Chembiochem 2009; 10:2745-52. [DOI: 10.1002/cbic.200900392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Ishikawa J, Matsumura S, Jaeger L, Inoue T, Furuta H, Ikawa Y. Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules. Arch Biochem Biophys 2009; 490:163-70. [PMID: 19728985 PMCID: PMC2826975 DOI: 10.1016/j.abb.2009.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
The DSL ribozyme is a class of artificial ligase ribozymes with a highly modular architecture, which catalyzes template-directed RNA ligation on a helical substrate module that can be either covalently connected (cis-DSL) or physically separated (trans-DSL) from the catalytic module. Substrate recognition by the catalytic module is promoted by one or two sets of GNRA/receptor interactions acting as clamps in the cis or trans configurations, respectively. In this study, we have rationally designed and analyzed the catalytic and self-assembly properties of several trans-DSL ribozymes with different sets of natural and artificial GNRA-receptor clamps. Two variants newly designed in this study showed significantly enhanced catalytic properties with respect of the original trans-DSL construct. While this work allows dissection of the turnover and catalytic properties of the trans-DSL ribozyme, it also emphasizes the remarkable modularity of RNA tertiary structure for nano-construction of complex functions.
Collapse
Affiliation(s)
- Junya Ishikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shigeyoshi Matsumura
- Institut de Science et d'Ingenierie Supramoleculaires (ISIS), Université Louis Pasteur, 8 Allée Gaspard Monge, B. P. 70028, 67083 Strasbourg Cedex, France
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Tan Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- ICORP, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiya Ikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| |
Collapse
|
42
|
Guo XF, Wang H, Guo YH, Zhang ZX, Zhang HS. Simultaneous analysis of plasma thiols by high-performance liquid chromatography with fluorescence detection using a new probe, 1,3,5,7-tetramethyl-8-phenyl-(4-iodoacetamido)difluoroboradiaza-s-indacene. J Chromatogr A 2009; 1216:3874-80. [DOI: 10.1016/j.chroma.2009.02.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/21/2009] [Accepted: 02/24/2009] [Indexed: 11/17/2022]
|