1
|
Hernandez JA, Micus PS, Sunga SAL, Mazzei L, Ciurli S, Meloni G. Metal selectivity and translocation mechanism characterization in proteoliposomes of the transmembrane NiCoT transporter NixA from Helicobacter pylori. Chem Sci 2024; 15:651-665. [PMID: 38179545 PMCID: PMC10762997 DOI: 10.1039/d3sc05135h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Essential trace metals play key roles in the survival, replication, and virulence of bacterial pathogens. Helicobacter pylori (H. pylori), the main bacterial cause of gastric ulcers, requires Ni(ii) to colonize and persist in the acidic environment inside the stomach, exploiting the nickel-containing enzyme urease to catalyze the hydrolysis of urea to ammonia and bicarbonate and create a pH-buffered microenvironment. Urease utilizes Ni(ii) as a catalytic cofactor for its activity. In ureolytic bacteria, unique transmembrane (TM) transporters evolved to guarantee the selective uptake and efflux of Ni(ii) across cellular membranes to meet the cellular requirements. NixA is an essential Ni(ii) transporter expressed by H. pylori when the extracellular environment experiences a drop in pH. This Class I nickel-cobalt transporter of the NiCoT family catalyzes the uptake of Ni(ii) across the inner membrane from the periplasm. In this study, we characterized NixA using a platform whereby, for the first time on a NiCoT transporter, recombinantly expressed and purified NixA and key mutants in the translocation pathway have been reconstituted in artificial lipid bilayer vesicles (proteoliposomes). Fluorescent sensors responsive to Ni(ii) transport (Fluozin-3-Zn(ii)), luminal pH changes (pyranine), and membrane potential (oxonol VI) were encapsulated in the proteoliposomes lumen to monitor, in real-time, NixA transport properties and translocation mechanism. Kinetic transport analysis revealed that NixA is highly selective for Ni(ii) with no substrate promiscuity towards Co(ii), the other putative metal substrate of the NiCoT family, nor Zn(ii). NixA-mediated Ni(ii) transport exhibited a Michaelis-Menten-type saturable substrate concentration dependence, with an experimental KM, Ni(ii) = 31.0 ± 1.2 μM. Ni(ii) transport by NixA was demonstrated to be electrogenic, and metal translocation did not require a proton motive force, resulting in the generation of a positive-inside transmembrane potential in the proteoliposome lumen. Mutation analysis characterized key transmembrane residues for substrate recognition, binding, and/or transport, suggesting the presence of a three-step transmembrane translocation conduit. Taken together, these investigations reveal that NixA is a Ni(ii)-selective Class I NiCoT electrogenic uniporter. The work also provides an in vitro approach to characterize the transport properties of metal transporters responsible for Ni(ii) acquisition and extrusion in prokaryotes.
Collapse
Affiliation(s)
- Jayoh A Hernandez
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Paul S Micus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sean Alec Lois Sunga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna Bologna I-40127 Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna Bologna I-40127 Italy
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
2
|
Górecki K, Hansen JS, Li P, Nayeri N, Lindkvist-Petersson K, Gourdon P. Microfluidic-Derived Detection of Protein-Facilitated Copper Flux Across Lipid Membranes. Anal Chem 2022; 94:11831-11837. [PMID: 35969432 PMCID: PMC9434548 DOI: 10.1021/acs.analchem.2c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Measurement of protein-facilitated copper flux across
biological
membranes is a considerable challenge. Here, we demonstrate a straightforward
microfluidic-derived approach for visualization and measurement of
membranous Cu flux. Giant unilamellar vesicles, reconstituted with
the membrane protein of interest, are prepared, surface-immobilized,
and assessed using a novel quencher–sensor reporter system
for detection of copper. With the aid of a syringe pump, the external
buffer is exchanged, enabling consistent and precise exchange of solutes,
without causing vesicle rupture or uneven local metal concentrations
brought about by rapid mixing. This approach bypasses common issues
encountered when studying heavy metal-ion flux, thereby providing
a new platform for in vitro studies of metal homeostasis
aspects that are critical for all cells, health, and disease.
Collapse
Affiliation(s)
- Kamil Górecki
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Jesper S Hansen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Ping Li
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Niloofar Nayeri
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Karin Lindkvist-Petersson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| |
Collapse
|
3
|
Catapano MC, Parsons DS, Kotuniak R, Mladěnka P, Bal W, Maret W. Probing the Structure and Function of the Cytosolic Domain of the Human Zinc Transporter ZnT8 with Nickel(II) Ions. Int J Mol Sci 2021; 22:2940. [PMID: 33799326 PMCID: PMC8000985 DOI: 10.3390/ijms22062940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
The human zinc transporter ZnT8 provides the granules of pancreatic β-cells with zinc (II) ions for assembly of insulin hexamers for storage. Until recently, the structure and function of human ZnTs have been modelled on the basis of the 3D structures of bacterial zinc exporters, which form homodimers with each monomer having six transmembrane α-helices harbouring the zinc transport site and a cytosolic domain with an α,β structure and additional zinc-binding sites. However, there are important differences in function as the bacterial proteins export an excess of zinc ions from the bacterial cytoplasm, whereas ZnT8 exports zinc ions into subcellular vesicles when there is no apparent excess of cytosolic zinc ions. Indeed, recent structural investigations of human ZnT8 show differences in metal binding in the cytosolic domain when compared to the bacterial proteins. Two common variants, one with tryptophan (W) and the other with arginine (R) at position 325, have generated considerable interest as the R-variant is associated with a higher risk of developing type 2 diabetes. Since the mutation is at the apex of the cytosolic domain facing towards the cytosol, it is not clear how it can affect zinc transport through the transmembrane domain. We expressed the cytosolic domain of both variants of human ZnT8 and have begun structural and functional studies. We found that (i) the metal binding of the human protein is different from that of the bacterial proteins, (ii) the human protein has a C-terminal extension with three cysteine residues that bind a zinc(II) ion, and (iii) there are small differences in stability between the two variants. In this investigation, we employed nickel(II) ions as a probe for the spectroscopically silent Zn(II) ions and utilised colorimetric and fluorimetric indicators for Ni(II) ions to investigate metal binding. We established Ni(II) coordination to the C-terminal cysteines and found differences in metal affinity and coordination in the two ZnT8 variants. These structural differences are thought to be critical for the functional differences regarding the diabetes risk. Further insight into the assembly of the metal centres in the cytosolic domain was gained from potentiometric investigations of zinc binding to synthetic peptides corresponding to N-terminal and C-terminal sequences of ZnT8 bearing the metal-coordinating ligands. Our work suggests the involvement of the C-terminal cysteines, which are part of the cytosolic domain, in a metal chelation and/or acquisition mechanism and, as now supported by the high-resolution structural work, provides the first example of metal-thiolate coordination chemistry in zinc transporters.
Collapse
Affiliation(s)
- Maria Carmen Catapano
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins Bldg, 150 Stamford St., London SE1 9NH, UK; (M.C.C.); (D.S.P.)
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Douglas S. Parsons
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins Bldg, 150 Stamford St., London SE1 9NH, UK; (M.C.C.); (D.S.P.)
- Department of Radiology, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Radosław Kotuniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (R.K.); (W.B.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (R.K.); (W.B.)
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins Bldg, 150 Stamford St., London SE1 9NH, UK; (M.C.C.); (D.S.P.)
| |
Collapse
|
4
|
Zhang C, Maslar D, Minckley TF, LeJeune KD, Qin Y. Spontaneous, synchronous zinc spikes oscillate with neural excitability and calcium spikes in primary hippocampal neuron culture. J Neurochem 2021; 157:1838-1849. [PMID: 33638177 DOI: 10.1111/jnc.15334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Zinc has been suggested to act as an intracellular signaling molecule due to its regulatory effects on numerous protein targets including enzymes, transcription factors, ion channels, neurotrophic factors, and postsynaptic scaffolding proteins. However, intracellular zinc concentration is tightly maintained at steady levels under natural physiological conditions. Dynamic changes in intracellular zinc concentration have only been detected in certain types of cells that are exposed to pathologic stimuli or upon receptor ligand binding. Unlike calcium, the ubiquitous signaling metal ion that can oscillate periodically and spontaneously in various cells, spontaneous zinc oscillations have never been reported. In this work, we made the novel observation that the developing neurons generated spontaneous and synchronous zinc spikes in primary hippocampal cultures using a fluorescent zinc sensor, FluoZin-3. Blocking of glutamate receptor-dependent calcium influx depleted the zinc spikes, suggesting that these zinc spikes were driven by the glutamate-mediated spontaneous neural excitability and calcium spikes that have been characterized in early developing neurons. Simultaneous imaging of calcium or pH together with zinc, we uncovered that a downward pH spike was evoked with each zinc spike and this transient cellular acidification occurred downstream of calcium spikes but upstream of zinc spikes. Our results suggest that spontaneous, synchronous zinc spikes were generated through calcium influx-induced cellular acidification, which liberates zinc from intracellular zinc binding ligands. Given that changes in zinc concentration can modulate activities of proteins essential for synapse maturation and neuronal differentiation, these zinc spikes might act as important signaling roles in neuronal development.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Taylor F Minckley
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kate D LeJeune
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
5
|
Principles and practice of determining metal-protein affinities. Biochem J 2021; 478:1085-1116. [PMID: 33710331 PMCID: PMC7959690 DOI: 10.1042/bcj20200838] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 01/02/2023]
Abstract
Metal ions play many critical roles in biology, as structural and catalytic cofactors, and as cell regulatory and signalling elements. The metal–protein affinity, expressed conveniently by the metal dissociation constant, KD, describes the thermodynamic strength of a metal–protein interaction and is a key parameter that can be used, for example, to understand how proteins may acquire metals in a cell and to identify dynamic elements (e.g. cofactor binding, changing metal availabilities) which regulate protein metalation in vivo. Here, we outline the fundamental principles and practical considerations that are key to the reliable quantification of metal–protein affinities. We review a selection of spectroscopic probes which can be used to determine protein affinities for essential biological transition metals (including Mn(II), Fe(II), Co(II), Ni(II), Cu(I), Cu(II) and Zn(II)) and, using selected examples, demonstrate how rational probe selection combined with prudent experimental design can be applied to determine accurate KD values.
Collapse
|
6
|
Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity Capillary Electrophoresis: A Critical Review of the Literature from 2018 to 2020. Anal Chem 2020; 93:295-310. [DOI: 10.1021/acs.analchem.0c04526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Damilola I. Adeoye
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Emmanuel O. Ogunkunle
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - I-An Wei
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Robert T. Filla
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
7
|
Qiu TA, Guidolin V, Hoang KNL, Pho T, Carra' A, Villalta PW, He J, Yao X, Hamers RJ, Balbo S, Feng ZV, Haynes CL. Nanoscale battery cathode materials induce DNA damage in bacteria. Chem Sci 2020; 11:11244-11258. [PMID: 34094365 PMCID: PMC8162401 DOI: 10.1039/d0sc02987d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022] Open
Abstract
The increasing use of nanoscale lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co1-y-z O2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano-bio interactions.
Collapse
Affiliation(s)
- Tian A Qiu
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Khoi Nguyen L Hoang
- Chemistry Department, Augsburg University 2211 Riverside Ave Minneapolis MN 55454 USA
| | - Thomas Pho
- Chemistry Department, Augsburg University 2211 Riverside Ave Minneapolis MN 55454 USA
| | - Andrea Carra'
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Jiayi He
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Xiaoxiao Yao
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Z Vivian Feng
- Chemistry Department, Augsburg University 2211 Riverside Ave Minneapolis MN 55454 USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| |
Collapse
|
8
|
Clement PL, Kuether JE, Borgatta JR, Buchman JT, Cahill MS, Qiu TA, Hamers RJ, Feng ZV, Haynes CL. Cobalt Release from a Nanoscale Multiphase Lithiated Cobalt Phosphate Dominates Interaction with Shewanella oneidensis MR-1 and Bacillus subtilis SB491. Chem Res Toxicol 2020; 33:806-816. [DOI: 10.1021/acs.chemrestox.9b00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Peter L. Clement
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joshua E. Kuether
- Chemistry Department, Augsburg University, 2211 Riverside Avenue, Minneapolis, Minnesota 55454, United States
| | - Jaya R. Borgatta
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joseph T. Buchman
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Meghan S. Cahill
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Tian A. Qiu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Z. Vivian Feng
- Chemistry Department, Augsburg University, 2211 Riverside Avenue, Minneapolis, Minnesota 55454, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Malaiyandi LM, Sharthiya H, Barakat AN, Edwards JR, Dineley KE. Using FluoZin-3 and fura-2 to monitor acute accumulation of free intracellular Cd 2+ in a pancreatic beta cell line. Biometals 2019; 32:951-964. [PMID: 31754889 PMCID: PMC7446769 DOI: 10.1007/s10534-019-00226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
The understanding of cellular Cd2+ accumulation and toxicity is hampered by a lack of fluorescent indicators selective for intracellular free Cd2+ ([Cd2+]i). In this study, we used depolarized MIN6 mouse pancreatic beta cells as a model for evaluating [Cd2+]i detection with commercially available fluorescent probes, most of which have been traditionally used to visualize [Ca2+]i and [Zn2+]i. We trialed a panel of 12 probes including fura-2, FluoZin-3, Leadmium Green, Rhod-5N, indo-1, Fluo-5N, and others. We found that the [Zn2+]i probe FluoZin-3 and the traditional [Ca2+]i probe fura-2 responded most consistently and robustly to [Cd2+]i accumulation mediated by voltage-gated calcium channels. While selective detection of [Cd2+]i by fura-2 required the omission of Ca2+ from extracellular buffers, FluoZin-3 responded to [Cd2+]i similarly in the presence or absence of extracellular Ca2+. Furthermore, we showed that FluoZin-3 and fura-2 can be used together for simultaneous monitoring of [Ca2+]i and [Cd2+]i in the same cells. None of the other fluorophores tested were effective [Cd2+]i detectors in this model.
Collapse
Affiliation(s)
- Latha M Malaiyandi
- Departments of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
| | - Harsh Sharthiya
- Departments of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
- AbbVie Inc., Headquarters 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - Ameir N Barakat
- Departments of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
| | - Joshua R Edwards
- Departments of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Kirk E Dineley
- Departments of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA.
| |
Collapse
|
10
|
Pal R, Barker ACJ, Hummel D, Pålsson LO. In Vitro and in Cellulo Sensing of Transition Metals Using Time-Resolved Fluorescence Spectroscopy and Microscopy. J Fluoresc 2018; 29:255-263. [PMID: 30588577 PMCID: PMC6428955 DOI: 10.1007/s10895-018-2335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
In this work we demonstrate that time domain techniques can be used successfully to monitor realtively weak modulations of the fluorescence in sensing applications. The metal sensing complex Newport Green DCF™ can detect selected transition metals in vivo as well as in vitro. Incremental addition of Ni and/or Zn (in vitro) lead to a substantial reduction in the yield of the fast component in a bi-exponential fluorescence decay (τ1 = 150-250 ps) from 60% to 30-35%. This is rationalised as an inhibition of intra-molecular electron transfer in the NPG sensing complex due to metal complexation. In order to explore this effect in cellulo, NIH 3 T3 mouse skin fibroplast cells were pre-incubated with set levels of Ni and Zn, at a constant concentration of NPG. The fluorescence modulation in cellullo was subsequently studied employing both time-resolved fluorescence microscopy and confocal fluorescence microscopy. In correlation with the in vitro observations, similar effects were observed on the fluorescence decay in cellulo.
Collapse
Affiliation(s)
- Robert Pal
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Abigail C J Barker
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Daniel Hummel
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Lars-Olof Pålsson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
11
|
Marszałek I, Goch W, Bal W. Ternary Zn(II) Complexes of FluoZin-3 and the Low Molecular Weight Component of the Exchangeable Cellular Zinc Pool. Inorg Chem 2018; 57:9826-9838. [PMID: 30088924 DOI: 10.1021/acs.inorgchem.8b00489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Knowledge of the nature of exchangeable (labile) intracellular Zn(II) is increasingly important for biomedical research. The detection and quantitative determination of Zn(II) ions is usually performed by using Zn(II)-specific fluorescent sensors, among which 2-[2-[2-[2-[bis(carboxylatomethyl)amino]-5-methoxyphenoxy]ethoxy]-4-(2,7-difluoro-3-oxido-6-oxo-4a,9a-dihydroxanthen-9-yl)anilino]acetate (FluoZin-3) has been used most widely. Selectivity of this sensor for Zn(II) over other divalent cations was demonstrated, but possible interference in its performance by other compounds has not been investigated. Many potential low molecular weight ligands for Zn(II) ions (LMWLs) are abundant in the cell. In this study we demonstrate that FluoZin-3 is susceptible to competition for Zn(II) from LMWLs and also forms strong ternary complexes with some of them. We determined the set of conditional stability constants C Ktern for ternary Zn(FluoZin-3)(LMWL) complexes using fluorescence titrations and applied it to model the response of exchangeable zinc to FluoZin-3. We found that competition and formation of ternary complexes with LMWLs together strongly affect (net reduce) the Zn(FluoZin-3) fluorescence. This effect may cause a significant underestimation of exchangeable Zn(II). We also demonstrated a strong pH dependence of this effect. Reduced glutathione (GSH) emerged as the most important Zn(II) partner among the LMWLs, characterized with Ktern = 2.8 ± 0.2 × 106 M-1. Our experiments and calculations suggest that Zn(LMWL) complexes contribute to the exchangeable cellular zinc pool.
Collapse
Affiliation(s)
- Ilona Marszałek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland.,Faculty of Pharmacy , Medical University of Warsaw , Banacha 1 , 02-091 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| |
Collapse
|
12
|
Nejdl L, Moravanska A, Smerkova K, Mravec F, Krizkova S, Pomorski A, Krężel A, Macka M, Adam V, Vaculovicova M. Short-sweep capillary electrophoresis with a selective zinc fluorescence imaging reagent FluoZin-3 for determination of free and metalothionein-2a-bound Zn2+ ions. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Infect Immun 2018; 86:IAI.00779-17. [PMID: 29133349 DOI: 10.1128/iai.00779-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans acquires essential metals from the host, yet the host can sequester these micronutrients through a process known as nutritional immunity. How the host withholds metals from C. albicans has been poorly understood; here we examine the role of calprotectin (CP), a transition metal binding protein. When CP depletes bioavailable Zn from the extracellular environment, C. albicans strongly upregulates ZRT1 and PRA1 for Zn import and maintains constant intracellular Zn through numerous cell divisions. We show for the first time that CP can also sequester Cu by binding Cu(II) with subpicomolar affinity. CP blocks fungal acquisition of Cu from serum and induces a Cu starvation stress response involving SOD1 and SOD3 superoxide dismutases. These transcriptional changes are mirrored when C. albicans invades kidneys in a mouse model of disseminated candidiasis, although the responses to Cu and Zn limitations are temporally distinct. The Cu response progresses throughout 72 h, while the Zn response is short-lived. Notably, these stress responses were attenuated in CP null mice, but only at initial stages of infection. Thus, Zn and Cu pools are dynamic at the host-pathogen interface and CP acts early in infection to restrict metal nutrients from C. albicans.
Collapse
|
14
|
Malaiyandi LM, Sharthiya H, Dineley KE. Fluorescence detection of intracellular cadmium with Leadmium Green. Biometals 2016; 29:625-35. [PMID: 27260023 DOI: 10.1007/s10534-016-9939-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 12/18/2022]
Abstract
Leadmium Green is a commercially available, small molecule, fluorescent probe advertised as a detector of free intracellular cadmium (Cd(2+)) and lead (Pb(2+)). Leadmium Green has been used in various paradigms, such as tracking Cd(2+) sequestration in plant cells, heavy metal export in protozoa, and Pb(2+) absorption by vascular endothelial cells. However very little information is available regarding its affinity and selectivity for Cd(2+), Pb(2+), and other metals. We evaluated the in vitro selectivity of Leadmium Green using spectrofluorimetry. Consistent with manufacturer's claims, Leadmium Green was sensitive to Cd(2+) (KD ~600 nM) and also Pb(2+) (KD ~9.0 nM) in a concentration-dependent manner, and furthermore proved insensitive to Ca(2+), Co(2+), Mn(2+) and Ni(2+). Leadmium Green also responded to Zn(2+) with a KD of ~82 nM. Using fluorescence microscopy, we evaluated Leadmium Green in live mouse hippocampal HT22 cells. We demonstrated that Leadmium Green detected ionophore-mediated acute elevations of Cd(2+) or Zn(2+) in a concentration-dependent manner. However, the maximum fluorescence produced by ionophore-delivered Zn(2+) was much less than that produced by Cd(2+). When tested in a model of oxidant-induced liberation of endogenous Zn(2+), Leadmium Green responded weakly. We conclude that Leadmium Green is an effective probe for monitoring intracellular Cd(2+), particularly in models where Cd(2+) accumulates rapidly, and when concomitant fluctuations of intracellular Zn(2+) are minimal.
Collapse
Affiliation(s)
- Latha M Malaiyandi
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Harsh Sharthiya
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA
| | - Kirk E Dineley
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL, 60515, USA.
| |
Collapse
|
15
|
Marszałek I, Krężel A, Goch W, Zhukov I, Paczkowska I, Bal W. Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences. J Inorg Biochem 2016; 161:107-14. [PMID: 27216451 DOI: 10.1016/j.jinorgbio.2016.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
Abstract
2-[2-[2-[2-[bis(carboxylatomethyl)amino]-5-methoxyphenoxy]ethoxy]-4-(2,7-difluoro-3-oxido-6-oxo-4a,9a-dihydroxanthen-9-yl)anilino]acetate (FluoZin-3) is used very broadly in life sciences as intra- and extracellular Zn(II) sensor selective for Zn(II) over Co(II), Ca(II) and Mg(II) ions at their physiological concentrations. It has been used for determination of relative and absolute levels of exchangeable Zn(II) in cells and extracellular fluids. Despite its popularity, the knowledge of its acid/base and Zn(II) coordination abilities and of its spectroscopic properties remained very limited. Also the published conditional dissociation constant ((C)Kd) values at pH7.4 are slightly discrepant, (15nM or 8.9nM). In this work we determined the (C)Kd for Zn(II) complexation by FluoZin-3 at pH7.4 with nitrilotriacetic acid (NTA) as competitor using two independent methods: fluorimetry and UV-Vis spectroscopy. For the first time, we investigated FluoZin-3 alone and complexed with Zn(II) in the wide range of pH, determining the total of eight pKa values from fluorescence spectra and from various regions of UV-Vis spectra. The validated values of (C)Kd (9.1±0.4nM; -log (C)Kd=8.04) and of the absolute (pH-independent) stability constant log βZnL (8.16±0.05) were provided by fluorescence spectroscopy experiments performed at 1μM concentrations. Our experiments demonstrated that both of aminocarboxylate moieties of FluoZin-3 bind the Zn(II) ion synergistically.
Collapse
Affiliation(s)
- I Marszałek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - A Krężel
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - W Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - I Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - I Paczkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - W Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
16
|
Glucose deprivation stimulates Cu2+ toxicity in cultured cerebellar granule neurons and Cu2+-dependent zinc release. Toxicol Lett 2016; 250-251:29-34. [DOI: 10.1016/j.toxlet.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022]
|
17
|
Ripoll C, Martin M, Roldan M, Talavera EM, Orte A, Ruedas-Rama MJ. Intracellular Zn(2+) detection with quantum dot-based FLIM nanosensors. Chem Commun (Camb) 2016; 51:16964-7. [PMID: 26443308 DOI: 10.1039/c5cc06676j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorescence Lifetime Imaging Microscopy (FLIM) has been employed for the detection of intracellular Zn(2+) levels, implicated in various signalling pathways, using a family of quantum dot (QD) nanosensors. The sensing mechanism was based on photoinduced electron transfer (PET) between an azacycle receptor group and the QD nanoparticles.
Collapse
Affiliation(s)
- Consuelo Ripoll
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain.
| | - Miguel Martin
- GENYO, Pfizer-University of Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain
| | - Mar Roldan
- GENYO, Pfizer-University of Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain
| | - Eva M Talavera
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain.
| | - Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain.
| | - Maria J Ruedas-Rama
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain.
| |
Collapse
|
18
|
Bajaj M, Mamidyala SK, Zuegg J, Begg SL, Ween MP, Luo Z, Huang JX, McEwan AG, Kobe B, Paton JC, McDevitt CA, Cooper MA. Discovery of novel pneumococcal surface antigen A (PsaA) inhibitors using a fragment-based drug design approach. ACS Chem Biol 2015; 10:1511-20. [PMID: 25786639 DOI: 10.1021/cb501032x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus pneumoniae is a leading cause of life-threatening bacterial infections, especially in young children in developing countries. Pneumococcal infections can be treated with β-lactam antibiotics, but rapid emergence of multidrug-resistant strains of S. pneumoniae over the past two decades has emphasized the need to identify novel drug targets. Pneumococcal surface antigen A (PsaA) is one such target, found on the cell surface of S. pneumoniae. It functions as a high-affinity substrate-binding protein, facilitating acquisition of Mn(2+), which has an important role in protecting S. pneumoniae from reactive oxygen species and, hence, oxidative stress. Consequently, PsaA is essential for bacterial survival and an important virulence factor, which makes it a promising target for antibiotic drug development. To design novel PsaA inhibitors, we used a combination of de novo fragment-based drug discovery and in silico virtual screening methods. We profiled a collection of low molecular weight compounds that were selected based on their structural diversity and ability to bind to apo-PsaA in a virtual docking experiment. The screening resulted in two initial hits that were further optimized by structural variation to improve their potency while maintaining their ligand efficiency and favorable physicochemical properties. The optimized hits were validated using a cell-based assay and molecular dynamics simulations. We found that virtual screening substantially augmented fragment-based drug design approaches, leading to the identification of novel pneumococcal PsaA inhibitors.
Collapse
Affiliation(s)
- Megha Bajaj
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Sreeman K. Mamidyala
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Johannes Zuegg
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Stephanie L. Begg
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Miranda P. Ween
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Zhenyao Luo
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia
| | - Johnny X. Huang
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Alastair G. McEwan
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia
- Australian
Infectious Diseases Research Centre, The University of Queensland, St. Lucia, 4072, Australia
| | - Bostjan Kobe
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia
- Australian
Infectious Diseases Research Centre, The University of Queensland, St. Lucia, 4072, Australia
| | - James C. Paton
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Christopher A. McDevitt
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Matthew A. Cooper
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| |
Collapse
|
19
|
Zhu H, Fan J, Wang B, Peng X. Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions. Chem Soc Rev 2014; 44:4337-66. [PMID: 25406612 DOI: 10.1039/c4cs00285g] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transition metals (d-blocks) are recognized as playing critical roles in biology, and they most often act as cofactors in diverse enzymes; however, improper regulation of transition metal stores is also connected to serious disorders. Therefore, the monitoring and imaging of transition metals are significant for biological research as well as clinical diagnosis. In this article, efforts have been made to review the chemical sensors that have been developed for the detection of the first-row d-block metals (except Cu and Zn): Cr, Mn, Fe, Co, and Ni. We focus on the development of fluorescent sensors (fall into three classes: "turn-off", "turn-on", and ratiometric), colorimetric sensors, and responsive MRI contrast agents for these transition metals (242 references). Future work will be likely to fill in the blanks: (1) sensors for Sc, Ti, and V; (2) MRI sensors for Cr, Mn, Co, Ni; (3) ratiometric fluorescent sensors for Cr(6+), Mn(2+), and Ni(2+), explore new ways of sensing Fe(3+) or Cr(3+) without the proton interference, as well as extend applications of MRI sensors to living systems.
Collapse
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, China.
| | | | | | | |
Collapse
|
20
|
Figueroa JAL, Vignesh KS, Deepe GS, Caruso J. Selectivity and specificity of small molecule fluorescent dyes/probes used for the detection of Zn2+ and Ca2+ in cells. Metallomics 2014; 6:301-15. [PMID: 24356796 DOI: 10.1039/c3mt00283g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fluorescent dyes are widely used in the detection of labile (free or exchangeable) Zn(2+) and Ca(2+) in living cells. However, their specificity over other cations and selectivity for detection of labile vs. protein-bound metal in cells remains unclear. We characterized these important properties for commonly used Zn(2+) and Ca(2+) dyes in a cellular environment. By tracing the fluorescence emission signal along with UV-Vis and size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS) in tandem, we demonstrated that among the dyes used for Zn(2+), Zinpyr-1 fluoresces in the low molecular mass (LMM) region containing labile Zn(2+), but also fluoresces in different molecular mass regions where zinc ion is detected. However, FluoZin™-3 AM, Newport Green™ DCF and Zinquin ethyl ester display weak fluorescence, lack of metal specificity and respond strongly in the high molecular mass (HMM) region. Four Ca(2+) dyes were studied in an unperturbed cellular environment, and two of these were tested for binding behavior under an intracellular Ca(2+) release stimulus. A majority of Ca(2+) was in the labile form as tested by SEC-ICP-MS, but the fluorescence from Calcium Green-1™ AM, Oregon Green® 488 BAPTA-1, Fura red™ AM and Fluo-4 NW dyes in cells did not correspond to free Ca(2+) detection. Instead, the dyes showed non-specific fluorescence in the mid- and high-molecular mass regions containing Zn, Fe and Cu. Proteomic analysis of one of the commonly seen fluorescing regions showed the possibility for some dyes to recognize Zn and Cu bound to metallothionein 2. These studies indicate that Zn(2+) and Ca(2+) binding dyes manifest fluorescence responses that are not unique to recognition of labile metals and bind other metals, leading to suboptimal specificity and selectivity.
Collapse
Affiliation(s)
- Julio A Landero Figueroa
- Metallomics Research Center, Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
21
|
McCranor BJ, Szmacinski H, Zeng HH, Stoddard AK, Hurst T, Fierke CA, Lakowicz JR, Thompson RB. Fluorescence lifetime imaging of physiological free Cu(II) levels in live cells with a Cu(II)-selective carbonic anhydrase-based biosensor. Metallomics 2014; 6:1034-42. [PMID: 24671220 PMCID: PMC4305278 DOI: 10.1039/c3mt00305a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed.
Collapse
Affiliation(s)
- Bryan J McCranor
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kiedrowski L. Proton-dependent zinc release from intracellular ligands. J Neurochem 2014; 130:87-96. [PMID: 24606401 DOI: 10.1111/jnc.12712] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/01/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022]
Abstract
In cultured cortical and hippocampal neurons when intracellular pH drops from 6.6 to 6.1, yet unclear intracellular stores release micromolar amounts of Zn(2+) into the cytosol. Mitochondria, acidic organelles, and/or intracellular ligands could release this Zn(2+) . Although exposure to the protonophore FCCP precludes reloading of the mitochondria and acidic organelles with Zn(2+) , FCCP failed to compromise the ability of the intracellular stores to repeatedly release Zn(2+) . Therefore, Zn(2+) -releasing stores were not mitochondria or acidic organelles but rather intracellular Zn(2+) ligands. To test which ligands might be involved, the rate of acid-induced Zn(2+) release from complexes with cysteine, glutathione, histidine, aspartate, glutamate, glycine, and carnosine was investigated; [Zn(2+) ] was monitored in vitro using the ratiometric Zn(2+) -sensitive fluorescent probe FuraZin-1. Carnosine failed to chelate Zn(2+) but did chelate Cu(2+) ; the remaining ligands chelated Zn(2+) and upon acidification were releasing it into the medium. However, when pH was decreasing from 6.6 to 6.1, only zinc-cysteine complexes rapidly accelerated the rate of Zn(2+) release. The zinc-cysteine complexes also released Zn(2+) when a histidine-modifying agent, diethylpyrocarbonate, was applied at pH 7.2. Since the cytosolic zinc-cysteine complexes can contain micromolar amounts of Zn(2+) , these complexes may represent the stores responsible for an acid-induced intracellular Zn(2+) release. This study aimed at identifying intracellular stores which release Zn(2+) when pHi drops from 6.6 to 6.1. It was found that these stores are not mitochondria or acidic organelles, but rather intracellular Zn(2+) ligands. When the pH was decreasing from 6.6 to 6.1, only zinc-cysteine complexes showed a rapid acceleration in the rate of Zn(2+) release. Therefore, the stores responsible for an acid-induced intracellular Zn(2+) release in neurons may be the cytosolic zinc-cysteine complexes.
Collapse
Affiliation(s)
- Lech Kiedrowski
- Departments of Psychiatry and Pharmacology, The Psychiatric Institute, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Structures of intermediate transport states of ZneA, a Zn(II)/proton antiporter. Proc Natl Acad Sci U S A 2013; 110:18484-9. [PMID: 24173033 DOI: 10.1073/pnas.1318705110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Efflux pumps belonging to the ubiquitous resistance-nodulation-cell division (RND) superfamily transport substrates out of cells by coupling proton conduction across the membrane to a conformationally driven pumping cycle. The heavy metal-resistant bacteria Cupriavidus metallidurans CH34 relies notably on as many as 12 heavy metal efflux pumps of the RND superfamily. Here we show that C. metallidurans CH34 ZneA is a proton driven efflux pump specific for Zn(II), and that transport of substrates through the transmembrane domain may be electrogenic. We report two X-ray crystal structures of ZneA in intermediate transport conformations, at 3.0 and 3.7 Å resolution. The trimeric ZneA structures capture protomer conformations that differ in the spatial arrangement and Zn(II) occupancies at a proximal and a distal substrate binding site. Structural comparison shows that transport of substrates through a tunnel that links the two binding sites, toward an exit portal, is mediated by the conformation of a short 14-aa loop. Taken together, the ZneA structures presented here provide mechanistic insights into the conformational changes required for substrate efflux by RND superfamily transporters.
Collapse
|
24
|
Agrawal B, Czymmek KJ, Sparks DL, Bais HP. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 2013; 288:7351-62. [PMID: 23322782 PMCID: PMC3591643 DOI: 10.1074/jbc.m112.406645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/20/2012] [Indexed: 02/02/2023] Open
Abstract
Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.
Collapse
Affiliation(s)
- Bhavana Agrawal
- From the Departments of Plant and Soil Sciences and
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
| | - Kirk J. Czymmek
- Biological Sciences, University of Delaware, Newark, Delaware 19716
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
| | - Donald L. Sparks
- From the Departments of Plant and Soil Sciences and
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
- the Center for Critical Zone Research, Newark, Delaware 19711
| | - Harsh P. Bais
- From the Departments of Plant and Soil Sciences and
- the Delaware Biotechnology Institute, Newark, Delaware 19711, and
- the Center for Critical Zone Research, Newark, Delaware 19711
| |
Collapse
|
25
|
Day JW, Kim CH, Smider VV, Schultz PG. Identification of metal ion binding peptides containing unnatural amino acids by phage display. Bioorg Med Chem Lett 2013; 23:2598-600. [PMID: 23541674 DOI: 10.1016/j.bmcl.2013.02.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/15/2013] [Accepted: 02/25/2013] [Indexed: 12/29/2022]
Abstract
The bidentate metal binding amino acid bipyridylalanine (BpyAla) was incorporated into a disulfide linked cyclic peptide phage displayed library to identify metal ion binding peptides. Selection against Ni(2+)-nitrilotriacetic acid (NTA) enriched for sequences containing histidine and BpyAla. BpyAla predominated when selections were carried out at lower pH, consistent with the differential pKa's of histidine and BpyAla. Two peptides containing BpyAla were synthesized and found to bind Ni(2+) with low micromolar dissociation constants. Incorporation of BpyAla and other metal binding amino acids into peptide and protein libraries should enable the evolution of novel binding and catalytic activities.
Collapse
Affiliation(s)
- Jonathan W Day
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
26
|
Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 2012; 109:1737-42. [PMID: 22307640 DOI: 10.1073/pnas.1110789109] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediate critical CNS functions, whereas excessive activity contributes to neuronal damage. At physiological glycine concentrations, NMDAR currents recorded from cultured rodent hippocampal neurons exhibited strong desensitization in the continued presence of NMDA, thus protecting neurons from calcium overload. Reducing copper availability by specific chelators (bathocuproine disulfonate, cuprizone) induced nondesensitizing NMDAR currents even at physiologically low glycine concentrations. This effect was mimicked by, and was not additive with, genetic ablation of cellular prion protein (PrP(C)), a key copper-binding protein in the CNS. Acute ablation of PrP(C) by enzymatically cleaving its cell-surface GPI anchor yielded similar effects. Biochemical studies and electrophysiological measurements revealed that PrP(C) interacts with the NMDAR complex in a copper-dependent manner to allosterically reduce glycine affinity for the receptor. Synthetic human Aβ(1-42) (10 nM-5 μM) produced an identical effect that could be mitigated by addition of excess copper ions or NMDAR blockers. Taken together, Aβ(1-42), copper chelators, or PrP(C) inactivation all enhance the activity of glycine at the NMDAR, giving rise to pathologically large nondesensitizing steady-state NMDAR currents and neurotoxicity. We propose a physiological role for PrP(C), one that limits excessive NMDAR activity that might otherwise promote neuronal damage. In addition, we provide a unifying molecular mechanism whereby toxic species of Aβ(1-42) might mediate neuronal and synaptic injury, at least in part, by disrupting the normal copper-mediated, PrP(C)-dependent inhibition of excessive activity of this highly calcium-permeable glutamate receptor.
Collapse
|
27
|
Pluth MD, Tomat E, Lippard SJ. Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Annu Rev Biochem 2011; 80:333-55. [PMID: 21675918 DOI: 10.1146/annurev-biochem-061009-091643] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biological mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes.
Collapse
Affiliation(s)
- Michael D Pluth
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
28
|
Lin S, Zhao Y, Xia T, Meng H, Zhaoxia J, Liu R, George S, Xiong S, Wang X, Zhang H, Pokhrel S, Mädler L, Damoiseaux R, Lin S, Nel AE. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS NANO 2011; 5:7284-95. [PMID: 21851096 PMCID: PMC4136441 DOI: 10.1021/nn202116p] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO, and Co(3)O(4)) nanoparticles in zebrafish embryos and larvae. High content bright-field imaging demonstrated potent and dose-dependent hatching interference in the embryos, with the exception of Co(3)O(4) which was relatively inert. We propose that the hatching interference was due to the shedding of Cu and Ni ions, compromising the activity of the hatching enzyme, ZHE1, similar to what we previously proposed for Zn(2+). This hypothesis is based on the presence of metal-sensitive histidines in the catalytic center of this enzyme. Co-introduction of a metal ion chelator, diethylene triamine pentaacetic acid (DTPA), reversed the hatching interference of Cu, Zn, and Ni. While neither the embryos nor larvae demonstrated morphological abnormalities, high content fluorescence-based imaging demonstrated that CuO, ZnO, and NiO could induce increased expression of the heat shock protein 70:enhanced green fluorescence protein (hsp70:eGFP) in transgenic zebrafish larvae. Induction of this response by CuO required a higher nanoparticle dose than the amount leading to hatching interference. This response was also DTPA-sensitive. We demonstrate that high content imaging of embryo development, morphological abnormalities, and HSP70 expression can be used for hazard ranking and determining the dose-response relationships leading to ENM effects on the development of the zebrafish embryo.
Collapse
Affiliation(s)
- Sijie Lin
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Center for NanoBiology and Predictive Toxicology, University of Bremen, Germany
| | - Yan Zhao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for NanoBiology and Predictive Toxicology, University of Bremen, Germany
| | - Huan Meng
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Ji Zhaoxia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Rong Liu
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Saji George
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Sijing Xiong
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Haiyuan Zhang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Suman Pokhrel
- IWT Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen, Germany
| | - Lutz Mädler
- IWT Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen, Germany
| | - Robert Damoiseaux
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Molecular Shared Screening Resource, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for NanoBiology and Predictive Toxicology, University of Bremen, Germany
- Corresponding Author: Andre Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|
29
|
Kay AR, Rumschik SM. Differential transition metal uptake and fluorescent probe localization in hippocampal slices. Metallomics 2011; 3:829-37. [PMID: 21681308 DOI: 10.1039/c1mt00024a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metals are taken up by the combined action of metal transporters and ion channels. In this communication we have measured the uptake of the biologically important transition metals Mn, Fe, Co, Ni, Cu, Zn and Cd by rat and mouse hippocampal slices using the fluorescent probes FluoZin-3 (FZ3) and Newport Green (NPG), introduced by acetoxymethyl ester (AM) loading. The combination of metals and probes is also used to attempt to localize cellular sites into which metals translocate. We show that FZ3 and NPG partition into different cellular compartments; FZ3 into neuropil, whereas NPG localizes in neuropil and compartments within the cell bodies of neurons. Ni, Zn and Cd pass across the plasma membrane and then accumulate in intracellular vesicles and within intracellular membranes of cell bodies. The latter accumulate Cd, while synaptic vesicles take up Co. The passage of Mn, Cu and Fe into cells can be detected but there is some uncertainty about their disposition within the cell. All of our experiments are consistent with metals accumulating in intracellular compartments rather than the cytoplasm. Whether and to what extent there are transient elevations of free zinc levels in the cytoplasm remains unclear.
Collapse
Affiliation(s)
- Alan R Kay
- Dept. Biology, 336 BB, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
30
|
Grand M, Oliveira HM, Ruzicka J, Measures C. Determination of dissolved zinc in seawater using micro-Sequential Injection lab-on-valve with fluorescence detection. Analyst 2011; 136:2747-55. [DOI: 10.1039/c1an15033b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species. Toxicol Appl Pharmacol 2011; 250:78-86. [DOI: 10.1016/j.taap.2010.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/19/2010] [Accepted: 10/06/2010] [Indexed: 12/17/2022]
|
32
|
Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B. Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res 2010; 89:634-42. [PMID: 21062918 DOI: 10.1093/cvr/cvq352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Zinc exists in biological systems as bound and histochemically reactive free Zn(2+). It is an essential structural constituent of many proteins, including enzymes from cellular signalling pathways, in which it functions as a signalling molecule. In cardiomyocytes at rest, Zn(2+) concentration is in the nanomolar range. Very little is known about precise mechanisms controlling the intracellular distribution of Zn(2+) and its variations during cardiac function. METHODS AND RESULTS Live-cell detection of intracellular Zn(2+) has become feasible through the recent development of Zn(2+)-sensitive and -selective fluorophores able to distinguish Zn(2+) from Ca(2+). Here, in freshly isolated rat cardiomyocytes, we investigated the rapid changes in Zn(2+) homeostasis using the Zn(2+)-specific fluorescent dye, FluoZin-3, in comparison to Ca(2+)-dependent fluo-3 fluorescence. Zn(2+) sparks and Zn(2+) transients, in quiescent and electrically stimulated cardiomyocytes, respectively, were visualized in a similar manner to known rapid Ca(2+) changes. Both Zn(2+) sparks and Zn(2+) transients required Ca(2+) entry. Inhibiting the sarcoplasmic reticulum Ca(2+) release or increasing the Ca(2+) load in a low-Na(+) solution suppressed or increased Zn(2+) movements, respectively. Mitochondrial inhibitors slightly reduced both Zn(2+) sparks and Zn(2+) transients. Oxidation by H₂O₂ facilitated and acidic pH inhibited the Ca(2+)-dependent Zn(2+) release. CONCLUSION It is proposed that Zn(2+) release during the cardiac cycle results mostly from intracellular free Ca(2+) increase, triggering production of reactive oxygen species that induce changes in metal-binding properties of metallothioneins and other redox-active proteins, aside from ionic exchange on these proteins.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara 06100, Turkey
| | | | | | | | | | | | | |
Collapse
|
33
|
Dodani SC, He Q, Chang CJ. A turn-on fluorescent sensor for detecting nickel in living cells. J Am Chem Soc 2010; 131:18020-1. [PMID: 19950946 DOI: 10.1021/ja906500m] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We present the synthesis and properties of Nickelsensor-1 (NS1), a new water-soluble, turn-on fluorescent sensor that is capable of selectively responding to Ni(2+) in aqueous solution and in living cells. NS1 combines a BODIPY chromophore and a mixed N/O/S receptor to provide good selectivity for Ni(2+) over a range of biologically abundant metal ions in aqueous solution. In addition to these characteristics, confocal microscopy experiments further show that NS1 can be delivered into living cells and report changes in intracellular Ni(2+) levels in a respiratory cell model.
Collapse
Affiliation(s)
- Sheel C Dodani
- Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
34
|
Colvin RA, Holmes WR, Fontaine CP, Maret W. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2010; 2:306-17. [PMID: 21069178 DOI: 10.1039/b926662c] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our knowledge of the molecular mechanisms of intracellular homeostatic control of zinc ions is now firmly grounded on experimental findings gleaned from the study of zinc proteomes and metallomes, zinc transporters, and insights from the use of computational approaches. A cell's repertoire of zinc homeostatic molecules includes cytosolic zinc-binding proteins, transporters localized to cytoplasmic and organellar membranes, and sensors of cytoplasmic free zinc ions. Under steady state conditions, a primary function of cytosolic zinc-binding proteins is to buffer the relatively large zinc content found in most cells to a cytosolic zinc(ii) ion concentration in the picomolar range. Under non-steady state conditions, zinc-binding proteins and transporters act in concert to modulate transient changes in cytosolic zinc ion concentration in a process that is called zinc muffling. For example, if a cell is challenged by an influx of zinc ions, muffling reactions will dampen the resulting rise in cytosolic zinc ion concentration and eventually restore the cytosolic zinc ion concentration to its original value by shuttling zinc ions into subcellular stores or by removing zinc ions from the cell. In addition, muffling reactions provide a potential means to control changes in cytosolic zinc ion concentrations for purposes of cell signalling in what would otherwise be considered a buffered environment not conducive for signalling. Such intracellular zinc ion signals are known to derive from redox modifications of zinc-thiolate coordination environments, release from subcellular zinc stores, and zinc ion influx via channels. Recently, it has been discovered that metallothionein binds its seven zinc ions with different affinities. This property makes metallothionein particularly well positioned to participate in zinc buffering and muffling reactions. In addition, it is well established that metallothionein is a source of zinc ions under conditions of redox signalling. We suggest that the biological functions of transient changes in cytosolic zinc ion concentrations (presumptive zinc signals) complement those of calcium ions in both spatial and temporal dimensions.
Collapse
Affiliation(s)
- Robert A Colvin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | | | | | | |
Collapse
|
35
|
Tomat E, Lippard SJ. Imaging mobile zinc in biology. Curr Opin Chem Biol 2010; 14:225-30. [PMID: 20097117 DOI: 10.1016/j.cbpa.2009.12.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/10/2009] [Indexed: 01/02/2023]
Abstract
Trafficking and regulation of mobile zinc pools influence cellular functions and pathological conditions in multiple organs, including brain, pancreas, and prostate. The quest for a dynamic description of zinc distribution and mobilization in live cells fuels the development of increasingly sophisticated probes. Detection systems that respond to zinc binding with changes of their fluorescence emission properties have provided sensitive tools for mobile zinc imaging, and fluorescence microscopy experiments have afforded depictions of zinc distribution within live cells and tissues. Both small-molecule and protein-based fluorescent probes can address complex imaging challenges, such as analyte quantification, site-specific sensor localization, and real-time detection.
Collapse
Affiliation(s)
- Elisa Tomat
- Department of Chemistry 18-498, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
Rumschik SM, Nydegger I, Zhao J, Kay AR. The interplay between inorganic phosphate and amino acids determines zinc solubility in brain slices. J Neurochem 2009; 108:1300-8. [PMID: 19183267 DOI: 10.1111/j.1471-4159.2009.05880.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inorganic phosphate (Pi) is an important polyanion needed for ATP synthesis and bone formation. As it is found at millimolar levels in plasma, it is usually incorporated as a constituent of artificial CSF formulations for maintaining brain slices. In this paper, we show that Pi limits the extracellular zinc concentration by inducing metal precipitation. We present data suggesting that amino acids like histidine may counteract the Pi-induced zinc precipitation by the formation of soluble zinc complexes. We propose that the interplay between Pi and amino acids in the extracellular space may influence the availability of metals for cellular uptake.
Collapse
Affiliation(s)
- Sean M Rumschik
- Department of Biology, University of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|