Luo G, Quan G, Guo J, Zhang H, Li S, Wu W, Nie L, Dong Y, Wu S, Zheng G, Yang J, Xu J, Wang W. A basic phenylalanine-rich oligo-peptide causes antibody cross-reactivity.
Electrophoresis 2011;
32:752-63. [PMID:
21365653 DOI:
10.1002/elps.201000446]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 11/08/2022]
Abstract
Glycolate oxidase (GO) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) are the two enzymes that serve key functions in the photorespiration and photosynthesis of plants. A 2 kDa highly basic phenylalanine-rich oligo-peptide (BOP) binds to the surface of acidic GO via ionic and hydrophobic interactions, forming the GO-BOP complex (GC). Previously, RubisCO was thought to exist as a single species composed of a large (rbc L, 54 kDa) and a small subunit (rbc S, 14 kDa). Here we show for the first time, using 2-DE, SDS-PAGE, immunoassays and amino acid determination, that BOP also interacts with RubisCO and that many RubisCO-BOP complexes (RCs), differing in pI, hydrophobicity and activity, coexist in green leaves. GCs, RCs and crude extract from green leaves analyzed by SDS-PAGE Western blotting showed that BOP exists either in subunit-BOP complexes (GO subunit-BOP, rbc L-BOP and rbc S-BOP etc.), with a wide variation in the number and the position of BOPs bound to each subunit molecular, or alone without a binding partner. When rbc L-BOP and rbc S-BOP were assayed by SDS-PAGE, BOP was dissociated from the subunit and it self-assembled to form 37 different BOP polymers (basic phenylalanine-rich protein) whose molecular weights (M(r)s) ranged from 34.0 to 91.6 kDa, indicating that the M(r) of BOP is about 2 kDa. Thus, the addition of BOP changes the M(r) of the subunit-BOP complexes so minimally that the rbc L and rbc S run at their predicted M(r)s on SDS-PAGE. In summary, the results described here demonstrate that the presence of BOP in complexes (both subunit-BOP complex and protein-BOP complex) can cause cross-reactivity of antibodies against different proteins.
Collapse