1
|
Du K, He H, Zhao L, Gao L, Li T. Application of Anti-Immune Complex Reagents in Small Molecule Analyte Immunoassays. ACS OMEGA 2024; 9:45688-45705. [PMID: 39583695 PMCID: PMC11579784 DOI: 10.1021/acsomega.4c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
The detection of small molecule analytes (SMAs) is of great significance for food and drug testing, environmental monitoring, and disease diagnosis. However, the performance of commercially available SMA immunoassays is limited by their low sensitivity and specificity due to the competitive format, leaving significant room for improvement. In recent years, the application of noncompetitive immunoassays for the detection of SMAs has become a hot topic, especially with the rapid evolution of antibody development technology. The remarkable development and application of anti-immune complex (anti-IC) reagents targeting antigen-specific antibodies have garnered significant interest from researchers and diagnostic companies, particularly in the field of SMA detection. The discovery and development history of anti-IC antibodies, the advantages and limitations of different anti-IC reagent preparation methods, and the mechanisms of interaction between ICs and anti-IC antibodies are reviewed. A comprehensive overview of the application of anti-IC antibodies in SMAs assay, including pesticide residue detection, mycotoxin detection, and clinical testing, as well as current challenges and potential solutions in noncompetitive immunoassays, is also summarized to provide a reference for the rapid and accurate detection of SMAs.
Collapse
Affiliation(s)
- Kai Du
- Shenzhen
New Industries Biomedical Engineering Company, Limited, Reagent Key Raw Materials R&D and Production Center, No. 16, Jinhui Road, Pingshan District, Shenzhen, Guangdong 518122, P. R. China
| | - Haihua He
- Shenzhen
New Industries Biomedical Engineering Company, Limited, Reagent Key Raw Materials R&D and Production Center, No. 16, Jinhui Road, Pingshan District, Shenzhen, Guangdong 518122, P. R. China
| | - Lan Zhao
- Shenzhen
New Industries Biomedical Engineering Company, Limited, Reagent Key Raw Materials R&D and Production Center, No. 16, Jinhui Road, Pingshan District, Shenzhen, Guangdong 518122, P. R. China
| | - Li Gao
- Shenzhen
New Industries Biomedical Engineering Company, Limited, Reagent Key Raw Materials R&D and Production Center, No. 16, Jinhui Road, Pingshan District, Shenzhen, Guangdong 518122, P. R. China
| | - Tinghua Li
- Shenzhen
New Industries Biomedical Engineering Company, Limited, Reagent Key Raw Materials R&D and Production Center, No. 16, Jinhui Road, Pingshan District, Shenzhen, Guangdong 518122, P. R. China
| |
Collapse
|
2
|
Rapid and sensitive noncompetitive immunoassay for detection of aflatoxin B1 based on anti-immune complex peptide. Food Chem 2022; 393:133317. [DOI: 10.1016/j.foodchem.2022.133317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
|
3
|
Development of a sensitive phage-mimotope and horseradish peroxidase based electrochemical immunosensor for detection of O,O-dimethyl organophosphorus pesticides. Biosens Bioelectron 2022; 218:114748. [DOI: 10.1016/j.bios.2022.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
|
4
|
Shi R, Zhao Z, Wang G, Zou W, Zhao F, Yang Z. Development of a noncompetitive magnetic-phage anti-immunocomplex assay for detecting of organophosphorus pesticides with a thiophosphate group. Anal Biochem 2022; 646:114632. [PMID: 35276070 DOI: 10.1016/j.ab.2022.114632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/13/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agriculture and the monitoring of their residues is very important to protect human health. Immunoassays are important tools for the analysis of small molecules. Generally, noncompetitive mode of immunoassay is considered to be more sensitive than competitive mode. In this study, peptides that can identify immunocomplex of OPs were screened from a phage display library. Subsequently, a second-generation peptide library was constructed and peptides with better performance were isolated. Then, a rapid and sensitive noncompetitive magnetic-phage anti-immunocomplex assay (MPHAIA) for OPs was developed based on the best phage-peptide and single chain antibody immunomagnetic beads. The MPHAIA showed broad specificity for OPs with a thiophosphate group. The half-saturated concentration (SC50) values and limits of detection (LODs) of MPHAIA to 12 OPs were ranged from 15.04 to 105.48 ng/mL and 4.07-14.19 ng/mL, respectively. The accuracy and reliability of MPHAIA were verified by gas chromatography-tandem mass spectrometry (GC-MS/MS) parallel analysis of six kinds of OPs in spiked cucumber samples. The recovery rates were in range of 81.2-116.3% with coefficient of variation from 4.1% to 14.1%, which were consistent with the results of GC-MS/MS.
Collapse
Affiliation(s)
- Ruirui Shi
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Zhiling Zhao
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Guanqun Wang
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Wenting Zou
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Fengchun Zhao
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China.
| | - Zhengyou Yang
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
5
|
Luque-Uría Á, Peltomaa R, Nevanen TK, Arola HO, Iljin K, Benito-Peña E, Moreno-Bondi MC. Recombinant Peptide Mimetic NanoLuc Tracer for Sensitive Immunodetection of Mycophenolic Acid. Anal Chem 2021; 93:10358-10364. [PMID: 34259504 PMCID: PMC8478282 DOI: 10.1021/acs.analchem.1c02109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycophenolic acid (MPA) is an immunosuppressant drug commonly used to prevent organ rejection in transplanted patients. MPA monitoring is of great interest due to its small therapeutic window. In this work, a phage-displayed peptide library was used to select cyclic peptides that bind to the MPA-specific recombinant antibody fragment (Fab) and mimic the behavior of MPA. After biopanning, several phage-displayed peptides were isolated and tested to confirm their epitope-mimicking nature in phage-based competitive immunoassays. After identifying the best MPA mimetic (ACEGLYAHWC with a disulfide constrained loop), several immunoassay approaches were tested, and a recombinant fusion protein containing the peptide sequence with a bioluminescent enzyme, NanoLuc, was developed. The recombinant fusion enabled its direct use as the tracer in competitive immunoassays without the need for secondary antibodies or further labeling. A bioluminescent sensor, using streptavidin-coupled magnetic beads for the immobilization of the biotinylated Fab antibody, enabled the detection of MPA with a detection limit of 0.26 ng mL-1 and an IC50 of 2.9 ± 0.5 ng mL-1. The biosensor showed good selectivity toward MPA and was applied to the analysis of the immunosuppressive drug in clinical samples, of both healthy and MPA-treated patients, followed by validation by liquid chromatography coupled to diode array detection.
Collapse
Affiliation(s)
- Álvaro Luque-Uría
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Riikka Peltomaa
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Tarja K Nevanen
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02150 Espoo, Finland
| | - Henri O Arola
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02150 Espoo, Finland
| | - Kristiina Iljin
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02150 Espoo, Finland
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
6
|
Synthesis of magnetic molecular imprinted polymers for solid-phase extraction coupled with gas chromatography-mass spectrometry for the determination of type Ⅱ pyrethroid residues in human plasma. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhang C, Wu X, Li D, Hu J, Wan D, Zhang Z, Hammock BD. Development of nanobody-based flow-through dot ELISA and lateral-flow immunoassay for rapid detection of 3-phenoxybenzoic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1757-1765. [PMID: 33861243 PMCID: PMC8442667 DOI: 10.1039/d1ay00129a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a major metabolite of pyrethroid pesticides, 3-phenoxybenzoic acid (3-PBA) can be an indicator of health risk and human exposure assessment. Based on nanobodies (Nbs), we have developed a rapid flow-through dot enzyme linked immunosorbent assay (dot ELISA) and gold nanoparticle (GNP) lateral-flow immunoassay for detecting 3-PBA. The limit of detection (LOD) values for detecting 3-PBA by flow-through dot ELISA and GNP lateral-flow immunoassay were 0.01 ng mL-1 and 0.1 ng mL-1, respectively. The samples (urine and lake water) with and without 3-PBA were detected by both nanobody-based flow-through dot ELISA and GNP lateral-flow immunoassay, as well as liquid chromatography-mass spectrometry (LC-MS) for validation. There was good consistency between the results of the immunoassays. This demonstrated that the two developed nanobody-based immunoassays are suitable for rapid detection of 3-PBA.
Collapse
Affiliation(s)
- Can Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ishimatsu R, Shimizu S, Hongsibsong S, Nakano K, Malasuk C, Oki Y, Morita K. Enzyme-linked immunosorbent assay based on light absorption of enzymatically generated aniline oligomer: Flow injection analysis for 3-phenoxybenzoic acid with anti-3-phenoxybenzoic acid monoclonal antibody. Talanta 2020; 218:121102. [PMID: 32797869 DOI: 10.1016/j.talanta.2020.121102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
A flow enzyme-linked immunosorbent assay (ELISA) method based on light absorption by enzymatically generated aniline oligomer in the presence of horseradish peroxidase (HRP), H2O2, and aniline is proposed. Aniline oligomer is rapidly formed through the polymerization reaction via the enzymatic reaction, and its fast reaction rate is beneficial for flow ELISA. An anti-3-phenoxybenzoic acid monoclonal antibody (mAb) was produced by mice, and was used for the flow competitive ELISA for the determination of 3-phenoxybenzoic acid (3PBA), which was performed on an acrylic plate having a Y-shaped channel. ABS resin beads (d = 1 mm) were filled in the channel to increase the surface area for the adsorption of the mAb. A clank-type detection chamber (optical length: 1 cm) made of polydimethylsiloxane (PDMS) containing carbon black, which can significantly decrease light scattering, was fabricated with a 3D printer. The PDMS detection chamber was connected to the outlet of the acrylic flow chip with a tube. A blue LED was used as a light source for the flow ELISA. The inhabitation concentration at 50% and the detection range (absorbance change from 90 to 10%) for the proposed flow competitive ELISA were 0.5 ppm and 0.05-5 ppm, respectively. We also performed the flow competitive ELISA in an artificial and real urine, and no significant matrix effect of the urine samples on the ELISA was found.
Collapse
Affiliation(s)
- Ryoichi Ishimatsu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shinichi Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Surat Hongsibsong
- NCD Center, Research Institute for Health Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chacriya Malasuk
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuji Oki
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kinichi Morita
- New Business Development Office, USHIO INC, 6-5 Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100- 8150, Japan
| |
Collapse
|
9
|
Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chem 2020; 339:128084. [PMID: 33152875 DOI: 10.1016/j.foodchem.2020.128084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Toxic small molecule contaminants (SMCs) residues in food threaten human health. Immunoassays are popular and simple techniques for SMCs analysis. However, immunoassays based on polyclonal antibodies, monoclonal antibodies and chemosynthetic antigens have some defects, such as complicated preparation of antibodies, risk of toxic haptens using for antigen chemosynthesis and so on. Phage-display technique has been proven to be an attractive alternative approach to producing antibody and antigen substitutes of SMCs, and opened up new realms for developing immunoassays of SMCs. These substitutes contain five types, including anti-idiotypic recombinant antibody (AIdA), anti-immune complex peptide (AIcP), anti-immune complex recombinant antibody (AIcA) and anti-SMC recombinant antibody (anti-SMC RAb). In this review, the principle of immunoassays based on the five types of substitutes, as well as their application and advantages are summarized and discussed.
Collapse
|
10
|
Liu Y, Liu D, Shen C, Dong S, Hu X, Lin M, Zhang X, Xu C, Zhong J, Xie Y, Zhang C, Wang D, Liu X. Construction and characterization of a class-specific single-chain variable fragment against pyrethroid metabolites. Appl Microbiol Biotechnol 2020; 104:7345-7354. [PMID: 32666189 DOI: 10.1007/s00253-020-10728-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022]
Abstract
Pyrethroids are insecticides that are widely used in rural and urban areas worldwide. After entering the environment, pyrethroids are rapidly metabolized or degraded by various biological or abiotic methods. In this study, a single-chain variable fragment (scFv) which could simultaneously detect three pyrethroid metabolites was constructed based on a hybridoma raised against 3-phenoxybenzoic acid (3-PBA). By molecular docking, it showed that there were hydrogen bonds, hydrophobic interactions, CH-π interaction, and cation-π interaction between 3-PBA and its scFv. All the contact residues contributing to hydrogen bonds are located in VH-CDR2 or its neighboring region, and two of them were mutants of the closest germline sequence. Based on competitive ELISA, the half maximal inhibitory concentration (IC50) of the scFv for 3-PBA, 3-phenoxybenzaldehyde (PBAld), and 3-phenoxybenzyl alcohol (PBAlc) were calculated to be 0.55, 0.59, and 0.63 μgmL-1, respectively. The scFv also showed 23.91%, 13.41%, 1.15%, 1.00%, and 0.56% cross-reactivity with phenothrin, deltamethrin, fenvalerate, beta-cypermethrin, and fenpropathrin. The broad specificity of the scFv may be due to its hapten design. The scFv could be employed in class-specific immunoassays for pyrethroid metabolites with phenoxybenzyl (PB) group. It is also potentially used for characterizing degradation of pyrethroids or detecting PBAlc (PBAld) alone, and the detection results should be confirmed by other selective methods. KEY POINTS: • A scFv which can simultaneously detect 3-PBA, PBAlc, and PBAld was constructed. • Antibody informatics and binding mode of the scFv were obtained. • The reason for its broad specificity was discussed. • It could be used to monitor single or multi-pyrethroid metabolites with PB group.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dan Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Chen Shen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Manman Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Jianfeng Zhong
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Yajing Xie
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Cunzheng Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China
| | - Donglan Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China.
| | - Xianjin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Room 213, Nanjing, 210014, China.
| |
Collapse
|
11
|
El-Moghazy AY, Huo J, Amaly N, Vasylieva N, Hammock BD, Sun G. An Innovative Nanobody-Based Electrochemical Immunosensor Using Decorated Nylon Nanofibers for Point-of-Care Monitoring of Human Exposure to Pyrethroid Insecticides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6159-6168. [PMID: 31927905 PMCID: PMC7799635 DOI: 10.1021/acsami.9b16193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel ultrasensitive nanobody-based electrochemical immunoassay was prepared for assessing human exposure to pyrethroid insecticides. 3-Phenoxybenzoic acid (3-PBA) is a common human urinary metabolite for numerous pyrethroids, which broadly served as a biomarker for following the human exposure to this pesticide group. The 3-PBA detection was via a direct competition for binding to alkaline phosphatase-embedded nanobodies between free 3-PBA and a 3-PBA-bovine serum albumin conjugate covalently immobilized onto citric acid-decorated nylon nanofibers, which were incorporated on a screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) was utilized to support the advantage of the employment of nanofibrous membranes and the success of the immunosensor assembly. The coupling between the nanofiber and nanobody technologies provided an ultrasensitive and selective immunosensor for 3-PBA detection in the range of 0.8 to 1000 pg mL-1 with a detection limit of 0.64 pg mL-1. Moreover, when the test for 3-PBA was applied to real samples, the established immunosensor proved to be a viable alternative to the conventional methods for 3-PBA detection in human urine even without sample cleanup. It showed excellent properties and stability over time.
Collapse
Affiliation(s)
- Ahmed Y. El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Jingqian Huo
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
12
|
Giang H, Pali M, Fan L, Suni II. Impedance Biosensing atop MoS
2
Thin Films with Mo−S Bond Formation to Antibody Fragments Created by Disulphide Bond Reduction. ELECTROANAL 2019. [DOI: 10.1002/elan.201800845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Giang
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Madhavi Pali
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Li Fan
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
| | - Ian I. Suni
- Department of Chemistry & Biochemistry, Materials Technology CenterSouthern Illinois University Carbondale IL 62901
- Department of Mechanical Engineering & Energy ProcessesSouthern Illinois University Carbondale IL 62901
| |
Collapse
|
13
|
Pali M, Suni II. Impedance Detection of 3‐Phenoxybenzoic Acid Comparing Wholes Antibodies and Antibody Fragments for Biomolecular Recognition. ELECTROANAL 2018. [DOI: 10.1002/elan.201800495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Madhavi Pali
- Department of Chemistry & BiochemistryMaterials Technology CenterSouthern Illinois University Carbondale, IL 62901 USA
| | - Ian I. Suni
- Department of Chemistry & BiochemistryMaterials Technology CenterSouthern Illinois University Carbondale, IL 62901 USA
- Department of Mechanical Engineering & Energy ProcessesSouthern Illinois University Carbondale, IL 62901 USA
| |
Collapse
|
14
|
Pali M, Bever CRS, Vasylieva N, Hammock BD, Suni II. Impedance Detection of 3-Phenoxybenzoic Acid with a Noncompetitive Two-site Phage Anti-immunocomplex Assay. ELECTROANAL 2018. [DOI: 10.1002/elan.201800457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Madhavi Pali
- Department of Chemistry & Biochemistry, Materials Technology Center; Southern Illinois University; Carbondale IL 62901
| | - Candace R. S. Bever
- Department of Entomology & Nematology; University of California; Davis CA 95616
- Western Regional Research Center; Agricultural Research Service Unided States Department of Agriculture; 800 Buchanan Street Albany CA 94710 USA
| | - Natalia Vasylieva
- Department of Entomology & Nematology; University of California; Davis CA 95616
| | - Bruce D. Hammock
- Department of Entomology & Nematology; University of California; Davis CA 95616
| | - Ian I. Suni
- Department of Chemistry & Biochemistry, Materials Technology Center; Southern Illinois University; Carbondale IL 62901
- Department of Mechanical Engineering & Energy Processes; Southern Illinois University; Carbondale IL 62901
| |
Collapse
|
15
|
An Electrochemiluminescence Immunosensor Based on Gold-Magnetic Nanoparticles and Phage Displayed Antibodies. SENSORS 2016; 16:308. [PMID: 26927130 PMCID: PMC4813883 DOI: 10.3390/s16030308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/23/2022]
Abstract
Using the multiple advantages of the ultra-highly sensitive electrochemiluminescence (ECL) technique, Staphylococcus protein A (SPA) functionalized gold-magnetic nanoparticles and phage displayed antibodies, and using gold-magnetic nanoparticles coated with SPA and coupled with a polyclonal antibody (pcAb) as magnetic capturing probes, and Ru(bpy)32+-labeled phage displayed antibody as a specific luminescence probe, this study reports a new way to detect ricin with a highly sensitive and specific ECL immunosensor and amplify specific detection signals. The linear detection range of the sensor was 0.0001~200 µg/L, and the limit of detection (LOD) was 0.0001 µg/L, which is 2500-fold lower than that of the conventional ELISA technique. The gold-magnetic nanoparticles, SPA and Ru(bpy)32+-labeled phage displayed antibody displayed different amplifying effects in the ECL immunosensor and can decrease LOD 3-fold, 3-fold and 20-fold, respectively, compared with the ECL immunosensors without one of the three effects. The integrated amplifying effect can decrease the LOD 180-fold. The immunosensor integrates the unique advantages of SPA-coated gold-magnetic nanoparticles that improve the activity of the functionalized capturing probe, and the amplifying effect of the Ru(bpy)32+-labeled phage displayed antibodies, so it increases specificity, interference-resistance and decreases LOD. It is proven to be well suited for the analysis of trace amounts of ricin in various environmental samples with high recovery ratios and reproducibility.
Collapse
|
16
|
Lee K, Gupta KC, Park SY, Kang IK. Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG. J Mater Chem B 2016; 4:704-715. [DOI: 10.1039/c5tb02131f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIgG anchored LC microdroplets showing configurational transition from radial (a) to bipolar (b) upon interaction with IgG.
Collapse
Affiliation(s)
- Kyubae Lee
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| | - Kailash Chandra Gupta
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
- Polymer Research Laboratory
| | - Soo-Young Park
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| |
Collapse
|
17
|
Adhikari M, Strych U, Kim J, Goux H, Dhamane S, Poongavanam MV, Hagström AEV, Kourentzi K, Conrad JC, Willson RC. Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays. Anal Chem 2015; 87:11660-5. [PMID: 26456715 DOI: 10.1021/acs.analchem.5b00702] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.
Collapse
Affiliation(s)
- Meena Adhikari
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | - Ulrich Strych
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | - Jinsu Kim
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Heather Goux
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | - Sagar Dhamane
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States
| | | | - Anna E V Hagström
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Katerina Kourentzi
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Jacinta C Conrad
- Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States
| | - Richard C Willson
- Department of Biology & Biochemistry, University of Houston , Houston, Texas 77004, United States.,Department of Chemical & Biomolecular Engineering, University of Houston , Houston, Texas 77204, United States.,Centro de Biotecnología FEMSA, Tecnológico de Monterrey , Monterrey, Nuevo León, Mexico
| |
Collapse
|
18
|
Hua X, Zhou L, Feng L, Ding Y, Shi H, Wang L, Gee SJ, Hammock BD, Wang M. Competitive and noncompetitive phage immunoassays for the determination of benzothiostrobin. Anal Chim Acta 2015; 890:150-6. [PMID: 26347177 DOI: 10.1016/j.aca.2015.07.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/16/2015] [Accepted: 07/30/2015] [Indexed: 01/03/2023]
Abstract
Twenty-three phage-displayed peptides that specifically bind to an anti-benzothiostrobin monoclonal antibody (mAb) in the absence or presence of benzothiostrobin were isolated from a cyclic 8-residue peptide phage library. Competitive and noncompetitive phage enzyme linked immunosorbent assays (ELISAs) for benzothiostrobin were developed by using a clone C3-3 specific to the benzothiostrobin-free mAb and a clone N6-18 specific to the benzothiostrobin immunocomplex, respectively. Under the optimal conditions, the half maximal inhibition concentration (IC50) of the competitive phage ELISA and the concentration of analyte producing 50% saturation of the signal (SC50) of the noncompetitive phage ELISA for benzothiostrobin were 0.94 and 2.27 ng mL(-1), respectively. The noncompetitive phage ELISA showed higher selectivity compared to the competitive. Recoveries of the competitive and the noncompetitive phage ELISAs for benzothiostrobin in cucumber, tomato, pear and rice samples were 67.6-119.6% and 70.4-125.0%, respectively. The amounts of benzothiostrobin in the containing incurred residues samples detected by the two types of phage ELISAs were significantly correlated with that detected by high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liangliang Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lu Feng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Limin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Shirley J Gee
- Department of Entomology and UCD Cancer Center, University of California, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, CA 95616, United States
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
19
|
Liu Y, Wu A, Hu J, Lin M, Wen M, Zhang X, Xu C, Hu X, Zhong J, Jiao L, Xie Y, Zhang C, Yu X, Liang Y, Liu X. Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Anal Biochem 2015; 483:7-11. [PMID: 25957127 DOI: 10.1016/j.ab.2015.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/28/2022]
Abstract
3-Phenoxybenzoic acid (3-PBA) is a general metabolite of synthetic pyrethroids. It could be used as a generic biomarker for multiple pyrethroids exposure for human or pyrethroid residues in the environment. In this study, monoclonal antibodies (mAbs) against 3-PBA were developed by using PBA-bovine serum albumin (BSA) as an immunogen. In the competitive enzyme-linked immunosorbent assay (ELISA) format, the I50 and I10 values of purified mAbs were 0.63 and 0.13 μg/ml, respectively, with a dynamic range between 0.19 and 2.04 μg/ml. Then, the colloidal gold (CG)-based lateral flow immunoassay was established based on the mAbs. The working concentration of coating antigen and CG-labeled antibodies and the blocking effects were investigated to get optimal assay performance. The cutoff value for the assay was 1 μg/ml 3-PBA, and the detection time was within 10 min. A total of 40 river water samples were spiked with 3-PBA at different levels and determined by the lateral flow immunoassay without any sample pretreatments. The negative false rate was 2.5%, and no positive false results were observed at these levels. This lateral flow immunoassay has the potential to be an on-site screening method for monitoring 3-PBA or pyrethroid residues in environmental samples.
Collapse
Affiliation(s)
- Yuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Aihua Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Jing Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Manman Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Mengtang Wen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xiaodan Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Jianfeng Zhong
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Lingxia Jiao
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Yajing Xie
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Cunzhen Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xiangyang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xianjin Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China.
| |
Collapse
|
20
|
Kim J, Adhikari M, Dhamane S, Hagström AEV, Kourentzi K, Strych U, Willson RC, Conrad JC. Detection of viruses by counting single fluorescent genetically biotinylated reporter immunophage using a lateral flow assay. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2891-8. [PMID: 25581289 PMCID: PMC4334444 DOI: 10.1021/am5082556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We demonstrated a lateral flow immunoassay (LFA) for detection of viruses using fluorescently labeled M13 bacteriophage as reporters and single-reporter counting as the readout. AviTag-biotinylated M13 phage were functionalized with antibodies using avidin-biotin conjugation and fluorescently labeled with AlexaFluor 555. Individual phage bound to target viruses (here MS2 as a model) captured on an LFA membrane strip were imaged using epi-fluorescence microscopy. Using automated image processing, we counted the number of bound phage in micrographs as a function of target concentration. The resultant assay was more sensitive than enzyme-linked immunosorbent assays and traditional colloidal-gold nanoparticle LFAs for direct detection of viruses.
Collapse
Affiliation(s)
- Jinsu Kim
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| | - Meena Adhikari
- Biology and Biochemistry, University of Houston, Houston, TX, 77204 USA
| | - Sagar Dhamane
- Biology and Biochemistry, University of Houston, Houston, TX, 77204 USA
| | - Anna E. V. Hagström
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| | - Katerina Kourentzi
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| | - Ulrich Strych
- Section of Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard C. Willson
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
- Biology and Biochemistry, University of Houston, Houston, TX, 77204 USA
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Tecnológico de Monterrey, Departamento de Biotecnología e Ingeniería de Alimentos, Centro de Biotecnología FEMSA, Monterrey, Nuevo León, Mexico
| | - Jacinta C. Conrad
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204 USA
| |
Collapse
|
21
|
Du P, Jin M, Yang L, Du X, Chen G, Zhang C, Jin F, Shao H, She Y, Wang S, Zheng L, Wang J. A rapid immunomagnetic-bead-based immunoassay for triazophos analysis. RSC Adv 2015. [DOI: 10.1039/c5ra15106f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of a direct competitive immunomagnetic-bead-based enzyme-linked immunosorbent assay (IMB-ELISA) to detect the triazophos pesticides.
Collapse
|
22
|
Li YS, Meng XY, Zhou Y, Zhang YY, Meng XM, Yang L, Hu P, Lu SY, Ren HL, Liu ZS, Wang XR. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples. Biosens Bioelectron 2014; 66:559-64. [PMID: 25522084 DOI: 10.1016/j.bios.2014.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/27/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples.
Collapse
Affiliation(s)
- Y S Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - X Y Meng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Y Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| | - Y Y Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - X M Meng
- Grain and Oil Food Processing Key Laboratory of Jilin Province, Jilin Business and Technology College, Changchun 130062, PR China
| | - L Yang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - P Hu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - S Y Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - H L Ren
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Z S Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - X R Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| |
Collapse
|
23
|
Quantitative Determination of Butocarboxim in Agricultural Products Based on Biotinylated Monoclonal Antibody. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Litvinov J, Hagström AEV, Lopez Y, Adhikari M, Kourentzi K, Strych U, Monzon FA, Foster W, Cagle PT, Willson RC. Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnol Lett 2014; 36:1863-1868. [PMID: 24930095 DOI: 10.1007/sl0529-014-1555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/09/2014] [Indexed: 05/27/2023]
Abstract
We report a novel, modular approach to immuno-detection based on antibody recognition and PCR read-out that employs antibody-conjugated bacteriophage and easily-manipulated non-pathogenic viruses as affinity agents. Our platform employs phage genetically tagged for in vivo biotinylation during phage maturation that can easily be linked, through avidin, to any biotinylated affinity agent, including full-length antibodies, peptides, lectins or aptamers. The presence of analyte is reported with high sensitivity through real-time PCR. This approach avoids the need to clone antibody-encoding DNA fragments, allows the use of full-length, high affinity antibodies and, by having DNA reporters naturally encapsulated inside the bacteriophage, greatly reduces nonspecific binding of DNA. We validate the efficacy of this new approach through the detection of Vascular Endothelial Growth Factor, a known angiogenic cancer biomarker protein, at attomolar concentrations in bronchoalveolar lavage fluid.
Collapse
Affiliation(s)
- Julia Litvinov
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX, 77204, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hwang I. Virus outbreaks in chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:13592-612. [PMID: 25068866 PMCID: PMC4179090 DOI: 10.3390/s140813592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
Abstract
Filamentous bacteriophages have successfully been used to detect chemical and biological analytes with increased selectivity and sensitivity. The enhancement largely originates not only from the ability of viruses to provide a platform for the surface display of a wide range of biological ligands, but also from the geometric morphologies of the viruses that constitute biomimetic structures with larger surface area-to-volume ratio. This review will appraise the mechanism of multivalent display of the viruses that enables surface modification of virions either by chemical or biological methods. The accommodation of functionalized virions to various materials, including polymers, proteins, metals, nanoparticles, and electrodes for sensor applications will also be discussed.
Collapse
Affiliation(s)
- Inseong Hwang
- The Research Institute of Basic Sciences, Seoul National University, Seoul 147-779, Korea.
| |
Collapse
|
26
|
Litvinov J, Hagström AEV, Lopez Y, Adhikari M, Kourentzi K, Strych U, Monzon FA, Foster W, Cagle PT, Willson RC. Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnol Lett 2014; 36:1863-8. [PMID: 24930095 DOI: 10.1007/s10529-014-1555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/09/2014] [Indexed: 01/19/2023]
Abstract
We report a novel, modular approach to immuno-detection based on antibody recognition and PCR read-out that employs antibody-conjugated bacteriophage and easily-manipulated non-pathogenic viruses as affinity agents. Our platform employs phage genetically tagged for in vivo biotinylation during phage maturation that can easily be linked, through avidin, to any biotinylated affinity agent, including full-length antibodies, peptides, lectins or aptamers. The presence of analyte is reported with high sensitivity through real-time PCR. This approach avoids the need to clone antibody-encoding DNA fragments, allows the use of full-length, high affinity antibodies and, by having DNA reporters naturally encapsulated inside the bacteriophage, greatly reduces nonspecific binding of DNA. We validate the efficacy of this new approach through the detection of Vascular Endothelial Growth Factor, a known angiogenic cancer biomarker protein, at attomolar concentrations in bronchoalveolar lavage fluid.
Collapse
Affiliation(s)
- Julia Litvinov
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX, 77204, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Adhikari M, Dhamane S, Hagström AEV, Garvey G, Chen WH, Kourentzi K, Strych U, Willson RC. Functionalized viral nanoparticles as ultrasensitive reporters in lateral-flow assays. Analyst 2014; 138:5584-7. [PMID: 23905160 DOI: 10.1039/c3an00891f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two types of viral nanoparticles were functionalized with target-specific antibodies and multiple copies of an enzymatic reporter (horseradish peroxidase). The particles were successfully integrated into an immunochromatographic assay detecting MS2 bacteriophage, a model for viral pathogens. The sensitivity of the assay was greatly superior to conventional gold nanoparticle lateral flow assays, and results could easily be evaluated, even without advanced lab instruments.
Collapse
Affiliation(s)
- Meena Adhikari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Song F, Zhou Y, Li YS, Meng XM, Meng XY, Liu JQ, Lu SY, Ren HL, Hu P, Liu ZS, Zhang YY, Zhang JH. A rapid immunomagnetic beads-based immunoassay for the detection of β-casein in bovine milk. Food Chem 2014; 158:445-8. [PMID: 24731368 DOI: 10.1016/j.foodchem.2014.02.150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 09/22/2013] [Accepted: 02/26/2014] [Indexed: 11/17/2022]
Abstract
An immunomagnetic beads-based enzyme-linked immunosorbent assay (IMBs-ELISA) was developed for the detection of β-casein in bovine milk. Immunomagnetic beads (IMBs) were employed as the solid phase. The anti-β-casein monoclonal antibody (McAb) bound to IMBs was used as capture probe and an anti-β-casein polyclonal antibody (PcAb), labelled with horseradish peroxidase (HRP), was employed as detector probe. Three reaction and two washing steps were needed. Each reaction needed 10 min or less, which significantly shortened detection compared with classic sandwich ELISA. β-Casein in bovine milk was detected across a linear range (2-128 μg mL(-1)). Application results were in accordance with the Kjejdahl method, which suggests the IMBs-ELISA is rapid and reliable for the detection of β-casein in bovine milk.
Collapse
Affiliation(s)
- F Song
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Y Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| | - Y S Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - X M Meng
- Grain and Oil Food Processing Key Laboratory of Jilin Province, Jilin Business and Technology College, Changchun 130062, PR China
| | - X Y Meng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - J Q Liu
- Production Quality Test Institute of Jilin Province, Changchun 130022, PR China
| | - S Y Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - H L Ren
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - P Hu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Z S Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Y Y Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - J H Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| |
Collapse
|
29
|
Bartosz W, Marcin W, Wojciech C. Development of hollow fiber-supported liquid-phase microextraction and HPLC-DAD method for the determination of pyrethroid metabolites in human and rat urine. Biomed Chromatogr 2013; 28:708-16. [DOI: 10.1002/bmc.3097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/24/2013] [Accepted: 10/31/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Wielgomas Bartosz
- Department of Toxicology; Medical University of Gdańsk; Gdańsk Poland
| | - Wiśniewski Marcin
- Department of Toxicology; Medical University of Gdańsk; Gdańsk Poland
| | | |
Collapse
|
30
|
Abstract
Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.
Collapse
Affiliation(s)
- Jong-Wook Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jangwon Song
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology, Seoul, Korea
| | - Mintai P Hwang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology, Seoul, Korea
| |
Collapse
|
31
|
Liquid–solid extraction coupled with magnetic solid-phase extraction for determination of pyrethroid residues in vegetable samples by ultra fast liquid chromatography. Talanta 2013; 114:167-75. [DOI: 10.1016/j.talanta.2013.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 11/21/2022]
|
32
|
Lee JT, Sudheendra L, Kennedy IM. Accelerated immunoassays based on magnetic particle dynamics in a rotating capillary tube with stationary magnetic field. Anal Chem 2012; 84:8317-22. [PMID: 22931580 DOI: 10.1021/ac301848q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rapid and simple magnetic particle-based immunoassay has been demonstrated in a capillary mixing system. Antibody-coated micrometer size superparamagnetic polystyrene (SPP) particles were used in an assay for rabbit IgG in a sandwich (noncompetitive) format. The kinetics of the assay was compared between a plate-based system and a single capillary tube. The interaction between the antigen (R-IgG) and the antibody (anti-R-IgG) that was carried by the SPP particles in a rotating capillary was tested under a stationary magnetic field. Competing magnetic and viscous drag forces helped to enhance the interaction between the analyte and the capture antibodies on the particles. The dimensionless Mason number (Mn) was employed to characterize the magnetic particle dynamics; a previously determined critical Mason number (Mn(c)) was employed as a guide to the appropriate experimental conditions of magnetic field strength and rotational speed of the capillary. The advantage of the rotating capillary system included a short assay time and a reduced reactive volume (20 μL). The results show that the immunoassay kinetics were improved by the formation of chains of the SPP particles for the conditions that corresponded to the critical Mason number.
Collapse
Affiliation(s)
- Jun-Tae Lee
- Department of Mechanical and Aerospace Engineering, University of California Davis, California 95616, USA
| | | | | |
Collapse
|
33
|
Lee JT, Abid A, Cheung KH, Sudheendra L, Kennedy IM. Superparamagnetic particle dynamics and mixing in a rotating capillary tube with a stationary magnetic field. MICROFLUIDICS AND NANOFLUIDICS 2012; 13:461-468. [PMID: 23066382 PMCID: PMC3467020 DOI: 10.1007/s10404-012-0981-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The dynamics of superparamagnetic particles subject to competing magnetic and viscous drag forces have been examined with a uniform, stationary, external magnetic field. In this approach, competing drag and magnetic forces were created in a fluid suspension of superparamagnetic particles that was confined in a capillary tube; competing viscous drag and magnetic forces were established by rotating the tube. A critical Mason number was determined for conditions under which the rotation of the capillary prevents the formation of chains from individual particles. The statistics of chain length were investigated by image analysis while varying parameters such as the rotation speed and the viscosity of the liquid. The measurements showed that the rate of particle chain formation was decreased with increased viscosity and rotation speed ; the particle dynamics could be quantified by the same dimensionless Mason number that has been demonstrated for rotating magnetic fields. The potential for enhancement of mixing in a bioassay was assessed using a fast chemical reaction that was diffusion-limited. Reducing the Mason below the critical value, so that chains were formed in the fluid, gave rise to a modest improvement in the time to completion of the reaction.
Collapse
|
34
|
Buckley TJ, Geer LA, Connor TH, Robertson S, Sammons D, Smith J, Snawder J, Boeniger M. A pilot study of workplace dermal exposures to cypermethrin at a chemical manufacturing plant. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:600-608. [PMID: 21936699 DOI: 10.1080/15459624.2011.613269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Exposure during the manufacture of pesticides is of particular concern due to their toxicity and because little is known about worker exposure, since most studies have focused on end-use application within agriculture or buildings. Even though dermal exposure can be expected to dominate for pesticides, little is known about workplace dermal exposures or even appropriate methods for their assessment. The current study begins to address this gap by evaluating alternative methods for assessing dermal exposure at a chemical manufacturing plant. For this pilot study, eight workers were recruited from a U.S. plant that produced the pesticide cypermethrin. Exposure was evaluated using three approaches: (1) survey assessment (questionnaire), (2) biological monitoring, and (3) workplace environmental sampling including ancillary measurements of glove contamination (interior and exterior). In each case, cypermethrin was quantified by enzyme-linked immunosorbent assay (ELISA). Environmental measurements identified two potential pathways of cypermethrin exposure: glove and surface contamination. Workplace exposure was also indicated by urine levels (specific gravity adjusted) of the parent compound, which ranged from 35 to 253 μg/L (median of 121 μg/L) with no clear trend in levels from pre- to post-shift. An exploratory analysis intended to guide future studies revealed a positive predictive association (Spearman correlation, p ≤ 0.10) between post-shift urine concentrations and a subset of survey questions evaluating worker knowledge, attitudes, and perceptions (KAP) of workplace dermal hazards, i.e., personal protective equipment self-efficacy, and inverse associations with behavior belief and information belief scales. These findings are valuable in demonstrating a variety of dermal exposure methods (i.e., behavioral attributes, external contamination, and biomarker) showing feasibility and providing measurement ranges and preliminary associations to support future and more complete assessments. Although these pilot data are useful for supporting design and sample size considerations for larger exposure and health studies, there is a need for validation studies of the ELISA assay for quantification of cypermethrin and its metabolites in urine.
Collapse
Affiliation(s)
- Timothy J Buckley
- Division of Environmental Health Sciences, The Ohio State University College of Public Health, Columbus, Ohio 43210-1240, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ahn KC, Kim HJ, Mccoy MR, Gee SJ, Hammock BD. Immunoassays and biosensors for monitoring environmental and human exposure to pyrethroid insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2792-802. [PMID: 21105656 PMCID: PMC3070843 DOI: 10.1021/jf1033569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper describes some of the early work on pyrethroid insecticides in the Casida laboratory and briefly reviews the development and application of immunochemical approaches for the detection of pyrethroid insecticides and their metabolites for monitoring environmental and human exposure. Multiple technologies can be combined to enhance the sensitivity and speed of immunochemical analysis. The pyrethroid assays are used to illustrate the use of some of these immunoreagents such as antibodies, competitive mimics, and novel binding agents such as phage-displayed peptides. The paper also illustrates reporters such as fluorescent dyes, chemiluminescent compounds, and luminescent lanthanide nanoparticles, as well as the application of magnetic separation, and automatic instrumental systems, biosensors, and novel immunological technologies. These new technologies alone and in combination result in an improved ability to both determine if effective levels of pyrethroids are being used in the field and evaluate possible contamination.
Collapse
Affiliation(s)
- Ki Chang Ahn
- Department of Entomology, University of California, Davis, Davis, CA 95616
| | - Hee-Joo Kim
- Department of Entomology, University of California, Davis, Davis, CA 95616
| | - Mark R. Mccoy
- Department of Entomology, University of California, Davis, Davis, CA 95616
| | - Shirley J. Gee
- Department of Entomology, University of California, Davis, Davis, CA 95616
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, Davis, CA 95616
- Corresponding author [telephone (530) 752–7519; fax (530) 752–1537; ]
| |
Collapse
|
36
|
Kim BK, Yang SY, Aziz MA, Jo K, Sung D, Jon S, Woo HY, Yang H. Electrochemical Immunosensing Chip Using Selective Surface Modification, Capillary-Driven Microfluidic Control, and Signal Amplification by Redox Cycling. ELECTROANAL 2010. [DOI: 10.1002/elan.201000148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|