1
|
Loka RS, Song Z, Sletten ET, Kayal Y, Vlodavsky I, Zhang K, Nguyen HM. Heparan Sulfate Mimicking Glycopolymer Prevents Pancreatic β Cell Destruction and Suppresses Inflammatory Cytokine Expression in Islets under the Challenge of Upregulated Heparanase. ACS Chem Biol 2022; 17:1387-1400. [PMID: 35658404 PMCID: PMC9251817 DOI: 10.1021/acschembio.1c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diabetes is a chronic disease in which the levels of blood glucose are too high because the body does not effectively produce insulin to meet its needs or is resistant to insulin. β Cells in human pancreatic islets produce insulin, which signals glucogen production by the liver and causes muscles and fat to uptake glucose. Progressive loss of insulin-producing β cells is the main cause of both type 1 and type 2 diabetes. Heparan sulfate (HS) is a ubiquitous polysaccharide found at the cell surface and in the extracellular matrix (ECM) of a variety of tissues. HS binds to and assembles proteins in ECM, thus playing important roles in the integrity of ECM (particularly basement membrane), barrier function, and ECM-cell interactions. Islet HS is highly expressed by the pancreatic β cells and critical for the survival of β cells. Heparanase is an endoglycosidase and cleaves islet HS in the pancreas, resulting in β-cell death and oxidative stress. Heparanase could also accelerate β-cell death by promoting cytokine release from ECM and secretion by activated inflammatory and endothelial cells. We demonstrate that HS-mimicking glycopolymer, a potent heparanase inhibitor, improves the survival of cultured mouse pancreatic β cells and protects HS contents under the challenge of heparanase in human pancreatic islets. Moreover, this HS-mimicking glycopolymer reduces the expression levels of cytokines (IL8, IL1β, and TNFα) and the gene encoding Toll-like Receptor 2 (TLR2) in human pancreatic islets.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yasmin Kayal
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Characterization of a Novel Lutein Cleavage Dioxygenase, EhLCD, from Enterobacter hormaechei YT-3 for the Enzymatic Synthesis of 3-Hydroxy-β-ionone from Lutein. Catalysts 2021. [DOI: 10.3390/catal11111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
3-Hydroxy-β-ionone, a flavor and fragrance compound with fruity violet-like characteristics, is widely applied in foodstuff and beverages, and is currently produced using synthetic chemistry. In this study, a novel lutein cleavage enzyme (EhLCD) was purified and characterized from Enterobacter hormaechei YT-3 to convert lutein to 3-hydroxy-β-ionone. Enzyme EhLCD was purified to homogeneity by ammonium sulfate precipitation, Q-Sepharose, phenyl-Sepharose, and Superdex 200 chromatography. The molecular mass of purified EhLCD, obtained by SDS-PAGE, was approximately 50 kDa. The enzyme exhibited the highest activity toward lutein, followed by zeaxanthin, β-cryptoxanthin, and β-carotene, suggesting that EhLCD exhibited higher catalytic efficiency for carotenoid substrates bearing 3-hydroxy-ionone rings. Isotope-labeling experiments showed that EhLCD incorporated oxygen from O2 into 3-hydroxy-β-ionone and followed a dioxygenase reaction mechanism for different carotenoid substrates. These results indicated that EhLCD is the first characterized bacterial lutein cleavage dioxygenase. Active EhLCD was also confirmed to be a Fe2+-dependent protein with 1 molar equivalent of non-haem Fe2+. The purified enzyme displayed optimal activity at 45 °C and pH 8.0. The optimum concentrations of the substrate, enzyme, and Tween 40 for 3-hydroxy-β-ionone production were 60 μM lutein/L, 1.5 U/mL, and 2% (w/v), respectively. Under optimum conditions, EhLCD produced 3-hydroxy-β-ionone (637.2 mg/L) in 60 min with a conversion of 87.0% (w/w), indicating that this enzyme is a potential candidate for the enzymatic synthesis of 3-hydroxy-β-ionone in biotechnological applications.
Collapse
|
3
|
TÜMAY SO. A novel selective “turn-on’’ fluorescent sensor for Hg2+ and its utility for spectrofluorimetric analysis of real samples. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.733160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
Development of a synthetic strategy for Water soluble tripodal receptors: Two novel fluorescent receptors for highly selective and sensitive detections of Fe3+ and Cu2+ ions and biological evaluation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112411] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Abstract
The organosulfur metabolite dimethylsulfoniopropionate (DMSP) and its enzymatic breakdown product dimethyl sulfide (DMS) have important implications in the global sulfur cycle and in marine microbial food webs. Enormous amounts of DMSP are produced in marine environments where microbial communities import and catabolize it via either the demethylation or the cleavage pathways. The enzymes that cleave DMSP are termed "DMSP lyases" and generate acrylate or hydroxypropionate, and ~107tons of DMS annually. An important environmental factor affecting DMS generation by the DMSP lyases is the availability of metal ions as these enzymes use various cofactors for catalysis. This chapter summarizes advances on bacterial DMSP catabolism, with an emphasis on various biochemical methods employed for the isolation and characterization of bacterial DMSP lyases. Strategies are presented for the purification of DMSP lyases expressed in bacterial cells. Specific conditions for the efficient isolation of apoproteins in Escherichia coli are detailed. DMSP cleavage is effectively inferred, utilizing the described HPLC-based acrylate detection assay. Finally, substrate and metal binding interactions are examined using fluorescence and UV-visible assays. Together, these methods are rapid and well suited for the biochemical and structural characterization of DMSP lyases and in the assessment of uncharacterized DMSP catabolic enzymes, and new metalloenzymes in general.
Collapse
|
6
|
Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Loka RS, Sletten ET, Barash U, Vlodavsky I, Nguyen HM. Specific Inhibition of Heparanase by a Glycopolymer with Well-Defined Sulfation Pattern Prevents Breast Cancer Metastasis in Mice. ACS APPLIED MATERIALS & INTERFACES 2019; 11:244-254. [PMID: 30543095 PMCID: PMC6512314 DOI: 10.1021/acsami.8b17625] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Heparanase, the heparan sulfate polysaccharide degrading endoglycosidase enzyme, has been correlated with tumor angiogenesis and metastasis and therefore has become a potential target for anticancer drug development. In this systematic study, the sulfation pattern of the pendant disaccharide moiety on synthetic glycopolymers was synthetically manipulated to achieve optimal heparanase inhibition. Upon evaluation, a glycopolymer with 12 repeating units was determined to be the most potent inhibitor of heparanase (IC50 = 0.10 ± 0.36 nM). This glycopolymer was further examined for cross-bioactivity using a solution-based competitive biolayer interferometry assay with other HS-binding proteins (growth factors, P-selectin, and platelet factor 4), which are responsible for mediating angiogenic activity, cell metastasis, and antibody-induced thrombocytopenia. The synthetic glycopolymer has low affinity for these HS-binding proteins in comparison to natural heparin. In addition, the glycopolymer possessed no proliferative properties toward human umbilical endothelial cells (HUVECs) and a potent antimetastatic effect against 4T1 mammary carcinoma cells. Thus, our study not only establishes a specific inhibitor of heparanase with high affinity but also illustrates the high effectiveness of this multivalent heparanase inhibitor in inhibiting experimental metastasis in vivo.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Eric T Sletten
- Department of Chemistry , University of Iowa , Iowa City, Iowa 52242 , United States
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine , Technion-Israel Institute of Technology , Haifa , Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine , Technion-Israel Institute of Technology , Haifa , Israel
| | - Hien M Nguyen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
8
|
Zhu Y, Ksibe AZ, Schäfer H, Blindauer CA, Bugg TDH, Chen Y. O2-independent demethylation of trimethylamineN-oxide by Tdm ofMethylocella silvestris. FEBS J 2016; 283:3979-3993. [DOI: 10.1111/febs.13902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yijun Zhu
- School of Life Sciences; University of Warwick; Coventry UK
| | - Amira Z. Ksibe
- Department of Chemistry; University of Warwick; Coventry UK
| | | | | | | | - Yin Chen
- School of Life Sciences; University of Warwick; Coventry UK
| |
Collapse
|
9
|
Brummett AE, Schnicker NJ, Crider A, Todd JD, Dey M. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW--A Mononuclear Iron-Dependent DMSP Lyase. PLoS One 2015; 10:e0127288. [PMID: 25993446 PMCID: PMC4437653 DOI: 10.1371/journal.pone.0127288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW.
Collapse
Affiliation(s)
- Adam E. Brummett
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Nicholas J. Schnicker
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexander Crider
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, United Kingdom
| | - Mishtu Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zhang F, Bhat S, Gabelli SB, Chen X, Miller MS, Nacev BA, Cheng YL, Meyers DJ, Tenney K, Shim JS, Crews P, Amzel LM, Ma D, Liu JO. Pyridinylquinazolines selectively inhibit human methionine aminopeptidase-1 in cells. J Med Chem 2013; 56:3996-4016. [PMID: 23634668 DOI: 10.1021/jm400227z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1-4), but all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1-4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang P, Yang X, Zhang F, Gabelli SB, Wang R, Zhang Y, Bhat S, Chen X, Furlani M, Amzel LM, Liu JO, Ma D. Pyridinylpyrimidines selectively inhibit human methionine aminopeptidase-1. Bioorg Med Chem 2013; 21:2600-17. [PMID: 23507151 DOI: 10.1016/j.bmc.2013.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure-activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5'-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a-30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.
Collapse
Affiliation(s)
- Pengtao Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Olaleye O, Raghunand TR, Bhat S, Chong C, Gu P, Zhou J, Zhang Y, Bishai WR, Liu JO. Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 91 Suppl 1:S61-5. [PMID: 22115541 PMCID: PMC11059541 DOI: 10.1016/j.tube.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis claims about five thousand lives daily world-wide, while one-third of the world is infected with dormant tuberculosis. The increased emergence of multi- and extensively drug-resistant strains of M. tuberculosis (Mtb) has heightened the need for novel antimycobacterial agents. Here, we report the discovery of 7-bromo-5-chloroquinolin-8-ol (CLBQ14)-a congener of clioquinol (CQ) as a potent and selective inhibitor of two methionine aminopeptidases (MetAP) from M. tuberculosis: MtMetAP1a and MtMetAP1c. MetAP is a metalloprotease that removes the N-terminal methionine during protein synthesis. N-terminal methionine excision (NME) is a universally conserved process required for the post-translational modification of a significant part of the proteome. The essential role of MetAP in microbes makes it a promising target for the development of new therapeutics. Using a target-based approach in a high-throughput screen, we identified CLBQ14 as a novel MtMetAP inhibitor with higher specificity for both MtMetAP1s relative to their human counterparts. We also found that CLBQ14 is potent against replicating and aged non-growing Mtb at low micro molar concentrations. Furthermore, we observed that the antimycobacterial activity of this pharmacophore correlates well with in vitro enzymatic inhibitory activity. Together, these results revealed a new mode of action of clioquinol and its congeners and validated the therapeutic potential of this pharmacophore for TB chemotherapy.
Collapse
Affiliation(s)
- Omonike Olaleye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Present address: College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004
| | - Tirumalai R. Raghunand
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Present address: Center for Cellular and Molecular Biology, Hyderabad, India
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Curtis Chong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Present address: Dana Farber Cancer Institute, Harvard Medical School, Boston, MA. Boston, MA 02215-5450, USA
| | - Peihua Gu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiangbing Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Kanudia P, Mittal M, Kumaran S, Chakraborti PK. Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity. BMC BIOCHEMISTRY 2011; 12:35. [PMID: 21729287 PMCID: PMC3154147 DOI: 10.1186/1471-2091-12-35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/05/2011] [Indexed: 01/07/2023]
Abstract
Background Methionine aminopeptidase (MetAP) is a ubiquitous enzyme in both prokaryotes and eukaryotes, which catalyzes co-translational removal of N-terminal methionine from elongating polypeptide chains during protein synthesis. It specifically removes the terminal methionine in all organisms, if the penultimate residue is non-bulky and uncharged. The MetAP action for exclusion of N-terminal methionine is mandatory in 50-70% of nascent proteins. Such an activity is required for proper sub cellular localization, additional processing and eventually for the degradation of proteins. Results We cloned genes encoding two such metalloproteases (MtMetAP1a and MtMetAP1c) present in Mycobacterium tuberculosis and expressed them as histidine-tagged proteins in Escherichia coli. Although they have different substrate preferences, for Met-Ala-Ser, we found, MtMetAP1c had significantly high enzyme turnover rate as opposed to MtMetAP1a. Circular dichroism spectroscopic studies as well as monitoring of enzyme activity indicated high temperature stability (up to 50°C) of MtMetAP1a compared to that of the MtMetAP1c. Modelling of MtMetAP1a based on MtMetAP1c crystal structure revealed the distinct spatial arrangements of identical active site amino acid residues and their mutations affected the enzymatic activities of both the proteins. Strikingly, we observed that 40 amino acid long N-terminal extension of MtMetAP1c, compared to its other family members, contributes towards the activity and stability of this enzyme, which has never been reported for any methionine aminopeptidase. Furthermore, mutational analysis revealed that Val-18 and Pro-19 of MtMetAP1c are crucial for its enzymatic activity. Consistent with this observation, molecular dynamic simulation studies of wild-type and these variants strongly suggest their involvement in maintaining active site conformation of MtMetAP1c. Conclusion Our findings unequivocally emphasized that N-terminal extension of MtMetAP1c contributes towards the functionality of the enzyme presumably by regulating active site residues through "action-at-a-distance" mechanism and we for the first time are reporting this unique function of the enzyme.
Collapse
Affiliation(s)
- Pavitra Kanudia
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160 036, India
| | | | | | | |
Collapse
|
14
|
Yuan H, Chai SC, Lam CK, Howard Xu H, Ye QZ. Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes. Bioorg Med Chem Lett 2011; 21:3395-8. [PMID: 21524572 DOI: 10.1016/j.bmcl.2011.03.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 12/30/2022]
Abstract
Drug resistance in gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.
Collapse
Affiliation(s)
- Hai Yuan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
15
|
Lu JP, Ye QZ. Expression and characterization of Mycobacterium tuberculosis methionine aminopeptidase type 1a. Bioorg Med Chem Lett 2010; 20:2776-9. [PMID: 20363127 DOI: 10.1016/j.bmcl.2010.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 12/22/2022]
Abstract
Methionine aminopeptidase (MetAP) carries out the cotranslational N-terminal methionine excision and is essential for bacterial survival. Mycobacterium tuberculosis expresses two MetAPs, MtMetAP1a and MtMetAP1c, at different levels in growing and stationary phases, and both are potential targets to develop novel antitubercular therapeutics. Recombinant MtMetAP1a was purified as an apoenzyme, and metal binding and activation were characterized with an activity assay using a fluorogenic substrate. Ni(II), Co(II) and Fe(II) bound tightly at micromolar concentrations, and Ni(II) was the most efficient activator for the MetAP-catalyzed substrate hydrolysis. Although the characteristics of metal binding and activation are similar to MtMetAP1c we characterized before, MtMetAP1a was significantly more active, and more importantly, a set of inhibitors displayed completely different inhibitory profiles on the two mycobacterial MetAPs in both potency and metalloform selectivity. The differences in catalysis and inhibition predicted the significant differences in active site structure.
Collapse
Affiliation(s)
- Jing-Ping Lu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | |
Collapse
|
16
|
Lu JP, Chai SC, Ye QZ. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. J Med Chem 2010; 53:1329-37. [PMID: 20038112 PMCID: PMC2820511 DOI: 10.1021/jm901624n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Methionine aminopeptidase (MetAP) carries out an important cotranslational N-terminal methionine excision of nascent proteins and represents a potential target to develop antibacterial and antitubercular drugs. We cloned one of the two MetAPs in Mycobacterium tuberculosis (MtMetAP1c from the mapB gene) and purified it to homogeneity as an apoenzyme. Its activity required a divalent metal ion, and Co(II), Ni(II), Mn(II), and Fe(II) were among activators of the enzyme. Co(II) and Fe(II) had the tightest binding, while Ni(II) was the most efficient cofactor for the catalysis. MtMetAP1c was also functional in E. coli cells because a plasmid-expressed MtMetAP1c complemented the essential function of MetAP in E. coli and supported the cell growth. A set of potent MtMetAP1c inhibitors were identified, and they showed high selectivity toward the Fe(II)-form, the Mn(II)-form, or the Co(II) and Ni(II) forms of the enzyme, respectively. These metalloform selective inhibitors were used to assign the metalloform of the cellular MtMetAP1c. The fact that only the Fe(II)-form selective inhibitors inhibited the cellular MtMetAP1c activity and inhibited the MtMetAP1c-complemented cell growth suggests that Fe(II) is the native metal used by MtMetAP1c in an E. coli cellular environment. Finally, X-ray structures of MtMetAP1c in complex with three metalloform-selective inhibitors were analyzed, which showed different binding modes and different interactions with metal ions and active site residues.
Collapse
Affiliation(s)
| | | | - Qi-Zhuang Ye
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202. Tel.: 317-278-0304; Fax: 317-278-4686;
| |
Collapse
|
17
|
Chai SC, Ye QZ. Analysis of the stoichiometric metal activation of methionine aminopeptidase. BMC BIOCHEMISTRY 2009; 10:32. [PMID: 20017927 PMCID: PMC2807865 DOI: 10.1186/1471-2091-10-32] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022]
Abstract
Background Methionine aminopeptidase (MetAP) is a ubiquitous enzyme required for cell survival and an attractive target for antibacterial and anticancer drug development. The number of a divalent metal required for catalysis is under intense debate. E. coli MetAP was shown to be fully active with one equivalent of metal by graphical analysis, but it was inferred to require at least two metals by a Hill equation model. Herein, we report a mathematical model and detailed analysis of the stoichiometric activation of MetAP by metal cofactors. Results Because of diverging results with significant implications in drug discovery, the experimental titration curve for Co2+ activating MetAP was analyzed by fitting with a multiple independent binding sites (MIBS) model, and the quality of the fitting was compared to that of the Hill equation. The fitting by the MIBS model was clearly superior and indicated that complete activity is observed at a one metal to one protein ratio. The shape of the titration curve was also examined for activation of metalloenzymes in general by one or two metals. Conclusions Considering different scenarios of MetAP activation by one or two metal ions, it is concluded that E. coli MetAP is fully active as a monometalated enzyme. Our approach can be of value in proper determination of the number of cations needed for catalysis by metalloenzymes.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
18
|
Structure-specific recognition protein 1 facilitates microtubule growth and bundling required for mitosis. Mol Cell Biol 2009; 30:935-47. [PMID: 19995907 DOI: 10.1128/mcb.01379-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tight regulation of microtubule (MT) dynamics is essential for proper chromosome movement during mitosis. Here we show, using mammalian cells, that structure-specific recognition protein 1 (SSRP1) is a novel regulator of MT dynamics. SSRP1 colocalizes with the spindle and midbody MTs, and associates with MTs both in vitro and in vivo. Purified SSRP1 facilitates tubulin polymerization and MT bundling in vitro. Knockdown of SSRP1 inhibits the growth of MTs and leads to disorganized spindle structures, reduction of K-fibers and midbody fibers, disrupted chromosome movement, and attenuated cytokinesis in vivo. These results demonstrate that SSRP1 is crucial for MT growth and spindle assembly during mitosis.
Collapse
|