1
|
Elisseeva S, Bastiaanssen TFS, Santovito E, Zhdanov AV, Cryan JF, Kerry JP, Papkovsky DB. Combining the oxygen sensor based respirometry and 16S rRNA amplicon sequencing for the analysis of microbiota in commercial mince products. Meat Sci 2023; 205:109316. [PMID: 37625355 DOI: 10.1016/j.meatsci.2023.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
In this study, rapid respirometric microbial testing was combined with 16S rRNA amplicon sequencing, to assess the composition of microbiota in a total of 64 samples of commercial beef, turkey, lamb and pork mince. The O2 sensor-based respirometry system, while producing the anticipated total aerobic viable counts (TVC) data and patterns for most samples, also revealed unusual (linear) respiration profiles for some samples, mostly lamb and pork mince. The TVC values for beef mince, produced by respirometry and calculated using the available calibration equation, correlated well with the conventional plate counting method, ISO 4833-1:2013, 2013, while for the other species the correlation was less good. These effects, not observed in previous studies employing various food matrices, require further investigation. Using the same samples (crude homogenates) as in respirometry, the whole microbiome was also analysed by 16S rRNA amplicon sequencing for each mince-type. The sequencing showed an overall decrease in alpha diversity over shelf-life, with lamb and pork mince maintaining a proportion of rare taxa. Some taxa exhibited significant changes in abundance over shelf-life and after the respirometric analysis, with beef mince exhibiting a decrease in aerobic bacteria and an increase in facultative anaerobes. Beta diversity was also seen to depend on mince-type. Thus, the combined use of respirometry and sequencing techniques shows promise as a useful and unique analytical approach for food quality and safety evaluation, However, more data points and in-depth analysis are required to back up the findings of this initial study.
Collapse
Affiliation(s)
- Sophia Elisseeva
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, College Road, Cork, Ireland
| | - Elisa Santovito
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland; Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Bari, Italy
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, College Road, Cork, Ireland
| | - Joe P Kerry
- School of Food and Nutritional Science, University College Cork, College Road, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland.
| |
Collapse
|
2
|
Sun K, Tang Y, Li Q, Yin S, Qin W, Yu J, Chiu DT, Liu Y, Yuan Z, Zhang X, Wu C. In Vivo Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer. ACS NANO 2016; 10:6769-81. [PMID: 27303785 DOI: 10.1021/acsnano.6b02386] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Small molecules participate extensively in various life processes. However, specific and sensitive detection of small molecules in a living system is highly challenging. Here, we describe in vivo real-time dynamic monitoring of small molecules by a luminescent polymer-dot oxygen transducer. The optical transducer combined with an oxygen-consuming enzyme can sensitively detect small-molecule substrates as the enzyme-catalyzed reaction depletes its internal oxygen reservoir in the presence of small molecules. We exemplify this detection strategy by using glucose-oxidase-functionalized polymer dots, yielding high selectivity, large dynamic range, and reversible glucose detection in cell and tissue environments. The transducer-enzyme assembly after subcutaneous implantation provides a strong luminescence signal that is transdermally detectable and continuously responsive to blood glucose fluctuations for up to 30 days. In view of a large library of oxygen-consuming enzymes, this strategy is promising for in vivo detection and quantitative determination of a variety of small molecules.
Collapse
Affiliation(s)
- Kai Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| | - Ying Tang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| | - Qiong Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| | - Shengyan Yin
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| | - Weiping Qin
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Yubin Liu
- Bioimaging Core, Faculty of Health Science, University of Macau , Taipa, Macau SAR China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Science, University of Macau , Taipa, Macau SAR China
| | - Xuanjun Zhang
- Bioimaging Core, Faculty of Health Science, University of Macau , Taipa, Macau SAR China
| | - Changfeng Wu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| |
Collapse
|
3
|
Zhou X, Liang H, Jiang P, Zhang KY, Liu S, Yang T, Zhao Q, Yang L, Lv W, Yu Q, Huang W. Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500155. [PMID: 27722081 PMCID: PMC5049659 DOI: 10.1002/advs.201500155] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/23/2015] [Indexed: 05/08/2023]
Abstract
Molecular oxygen (O2) plays a key role in many physiological processes, and becomes a toxicant to kill cells when excited to 1O2. Intracellular O2 levels, or the degree of hypoxia, are always viewed as an indicator of cancers. Due to the highly efficient cancer therapy ability and low side effect, photodynamic therapy (PDT) becomes one of the most promising treatments for cancers. Herein, an early-stage diagnosis and therapy system is reported based on the phosphorescent conjugated polymer dots (Pdots) containing Pt(II) porphyrin as an oxygen-responsive phosphorescent group and 1O2 photosensitizer. Intracellular hypoxia detection has been investigated. Results show that cells treated with Pdots display longer lifetimes under hypoxic conditions, and time-resolved luminescence images exhibit a higher signal-to-noise ratio after gating off the short-lived background fluorescence. Quantification of O2 is realized by the ratiometric emission intensity of phosphorescence/fluorescence and the lifetime of phosphorescence. Additionally, the PDT efficiency of Pdots is estimated by flow cytometry, MTT cell viability assay, and in situ imaging of PDT induced cell death. Interestingly, Pdots exhibit a high PDT efficiency and would be promising in clinical applications.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Hua Liang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Pengfei Jiang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Tianshe Yang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Lijuan Yang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Wen Lv
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 Jiangsu P.R. China; Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (Nanjing Tech) Nanjing 211816 Jiangsu P.R. China
| |
Collapse
|
4
|
Mitochondria-targeted oxygen probes based on cationic iridium complexes with a 5-amino-1, 10-phenanthroline ligand. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Callier V, Nijhout HF. Plasticity of insect body size in response to oxygen: integrating molecular and physiological mechanisms. CURRENT OPINION IN INSECT SCIENCE 2014; 1:59-65. [PMID: 32846731 DOI: 10.1016/j.cois.2014.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 06/11/2023]
Abstract
The hypoxia-induced reduction of body size in Drosophila and Manduca is ideal for understanding the mechanisms of body size plasticity. The mechanisms of size regulation are well-studied in these species, and the molecular mechanisms of oxygen sensing are also well-characterized. What is missing is the connection between oxygen sensing and the mechanisms that regulate body size in standard conditions. Oxygen functions both as a substrate for metabolism to produce energy and as a signaling molecule that activates specific cellular signaling networks. Hypoxia affects metabolism in a passive, generalized manner. Hypoxia also induces the activation of targeted signaling pathways, which may mediate the reduction in body size, or alternatively, compensate for the metabolic perturbations and attenuate the reduction in size. These alternative hypotheses await testing. Both perspectives-metabolism and information-are necessary to understand how oxygen affects body size.
Collapse
|
6
|
Rachinskiy K, Kunze M, Graf C, Schultze H, Boy M, Büchs J. Extension and application of the "enzyme test bench" for oxygen consuming enzyme reactions. Biotechnol Bioeng 2013; 111:244-53. [PMID: 23928872 DOI: 10.1002/bit.25020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 11/08/2022]
Abstract
Within industrial process development, powerful screening techniques are required to select the optimal biocatalyst regarding such process characteristics as cost effectiveness, turnover number or space time yield. Conventional measurement of the initial enzyme activity, which is the established high throughput screening technique, disregards the long-term stability of an enzyme. A new model based technique called "enzyme test bench" was recently presented before by our group which addresses this issue. It combines the high throughput screening approach with an extensive enzyme characterization, focusing especially on the long-term stability. The technique is based on modeling enzyme activation and deactivation as temperature dependent reactions in accordance with the Arrhenius law. Controlling these reactions by tailor made temperature profiles, the slow long-term deactivation effects are accelerated and characterizing models are parameterized. Thus, the process properties of an enzyme can be predicted and included into the screening procedure. Moreover, the optimum process temperature as function of the envisaged operation time can be found by these means. In this work, the technique is extended to the important class of oxygen consuming reactions. For this aim, a suitable assay and a defined oxygen supply were established. This extended technique was applied to characterize and to optimize a complex, multi-stage laccase-mediator system (LMS). For the variation and optimization of the enzyme to mediator to substrate ratio, experiments in microtiter plates were performed. Predictions from this high throughput characterization were compared to long-term experiments in a RAMOS device (Respiration Activity Monitoring System), a technique for on-line monitoring of the oxygen transfer rate in shake flasks. Within the limits of the model validity, the enzyme test bench predictions are in good agreement with the long-term experiments.
Collapse
|
7
|
|
8
|
Mitake M, Shidoji Y. Geranylgeraniol oxidase activity involved in oxidative formation of geranylgeranoic acid in human hepatoma cells. ACTA ACUST UNITED AC 2012; 33:15-24. [PMID: 22361882 DOI: 10.2220/biomedres.33.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Geranylgeranoic acid (GGA), a 20-carbon acyclic polyprenoic acid (all-trans 3,7,11,15-tetramethyl- 2,4,6,10,14-hexadecatetraenoic acid) and its derivatives were developed as synthetic "acyclic retinoids" for cancer chemoprevention. Previously, we have shown the natural occurrence of GGA in various medicinal herbs and reported enzymatic formation of GGA from geranylgeraniol (GGOH) through geranylgeranial (GGal) by rat liver homogenates. Here, we present several lines of evidence that a putative GGOH oxidase is involved in GGA synthesis by human hepatoma cell lysates. First, conversion of GGOH to GGal did not require exogenous NAD(+), whereas the conversion from GGal to GGA absolutely required additional NAD(+). Second, GGal synthesis from GGOH was coupled with consumption of oxygen from the reaction mixture. Third, GGOH-dependent GGal synthesis activity was proteinase K-resistant and even enhanced by proteinase K treatment; GGOH oxidase activity was enriched in the mitochondrial fraction. Finally, recombinant human monoamine oxidase (MAO)-B, but not MAO-A catalyzed oxidation of GGOH to GGal. These data suggest that a putative mitochondrial GGOH oxidase is involved in the initial step of GGA synthesis from GGOH.
Collapse
Affiliation(s)
- Maiko Mitake
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki, 851-2195, Japan
| | | |
Collapse
|
9
|
Optical probes and techniques for O2 measurement in live cells and tissue. Cell Mol Life Sci 2012; 69:2025-39. [PMID: 22249195 PMCID: PMC3371327 DOI: 10.1007/s00018-011-0914-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/19/2011] [Accepted: 12/29/2011] [Indexed: 01/03/2023]
Abstract
In recent years, significant progress has been achieved in the sensing and imaging of molecular oxygen (O2) in biological samples containing live cells and tissue. We review recent developments in the measurement of O2 in such samples by optical means, particularly using the phosphorescence quenching technique. The main types of soluble O2 sensors are assessed, including small molecule, supramolecular and particle-based structures used as extracellular or intracellular probes in conjunction with different detection modalities and measurement formats. For the different O2 sensing systems, particular attention is paid to their merits and limitations, analytical performance, general convenience and applicability in specific biological applications. The latter include measurement of O2 consumption rate, sample oxygenation, sensing of intracellular O2, metabolic assessment of cells, and O2 imaging of tissue, vasculature and individual cells. Altogether, this gives the potential user a comprehensive guide for the proper selection of the appropriate optical probe(s) and detection platform to suit their particular biological applications and measurement requirements.
Collapse
|
10
|
Fercher A, Zhdanov AV, Papkovsky DB. O2 Imaging in Biological Specimens. PHOSPHORESCENT OXYGEN-SENSITIVE PROBES 2012. [DOI: 10.1007/978-3-0348-0525-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Traylor MJ, Ryan JD, Arnon ES, Dordick JS, Clark DS. Rapid and quantitative measurement of metabolic stability without chromatography or mass spectrometry. J Am Chem Soc 2011; 133:14476-9. [PMID: 21766815 DOI: 10.1021/ja203172c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic stability measurements are a critical component of preclinical drug development. Available measurement strategies rely on chromatography and mass spectrometry, which are expensive and labor intensive. We have developed a general method to determine the metabolic stability of virtually any compound by quantifying cofactors in the mechanism of cytochrome P450 enzymes using fluorescence intensity measurements. While many previous studies have shown that simple measurements of cofactor depletion do not correlate with substrate conversion (i.e., metabolic stability) in P450 systems, the present work employs a reaction engineering approach to simplify the overall rate equation, thus allowing the accurate and quantitative determination of substrate depletion from simultaneous measurements of NADPH and oxygen depletion. This method combines the accuracy and generality of chromatography with the ease, throughput, and real-time capabilities of fluorescence.
Collapse
Affiliation(s)
- Matthew J Traylor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|