1
|
Li J, He Y, Fu J, Wang Y, Fan X, Zhong T, Zhou H. Dietary supplementation of Acanthopanax senticosus extract alleviates motor deficits in MPTP-induced Parkinson's disease mice and its underlying mechanism. Front Nutr 2023; 9:1121789. [PMID: 36865944 PMCID: PMC9971719 DOI: 10.3389/fnut.2023.1121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Acanthopanax senticosus extract (ASE), a dietary supplement with antifatigue, neuroprotective, and immunomodulatory properties, has been widely used due to its high polyphenol content. Our previous study showed that ASE could be used to treat Parkinson's disease (PD) as it contains multiple monoamine oxidase B inhibitors prescribed in early PD. However, its mechanism remains ambiguous. In this study, we investigated the protective effects of ASE on MPTP-induced PD in mice and explored the underlying mechanisms of action. We found that the administration of ASE significantly improved motor coordination in mice with MPTP-induced PD. As shown by quantitative proteomic analysis, 128 proteins' expression significantly changed in response to ASE administration, most of which were involved with Fcγ receptor-mediated phagocytosis in macrophages and monocytes signaling pathway, PI3K/AKT signaling pathway, and insulin receptor signaling pathway. Furthermore, the network analysis results showed that ASE modulates protein networks involved in regulating cellular assembly, lipid metabolism, and morphogenesis, all of which have implications for treating PD. Overall, ASE served as a potential therapeutic because it regulated multiple targets to improve motor deficits, which could lay the strong foundation for developing anti-PD dietary supplements.
Collapse
Affiliation(s)
- Jingbin Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Yang He
- School of Life Sciences, Jilin University, Changchun, China
| | - Jia Fu
- School of Health, Zhuhai College of Science and Technology, Zhuhai, China
| | - Yimin Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xing Fan
- School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China,*Correspondence: Tian Zhong,
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China,Hui Zhou,
| |
Collapse
|
2
|
Zhang S, Wang G, Lyu Y, Tian H, Shu C, Chen B, Fan W, Xu W, Shan Y, He J, Yang YG, Hu Z, Sun L. Human growth hormone supplement promotes human lymphohematopoietic cell reconstitution in immunodeficient mice. Immunotherapy 2022; 14:1383-1392. [PMID: 36468406 DOI: 10.2217/imt-2021-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the potential of human growth hormone (hGH) to improve human hematopoietic reconstitution in humanized mice. Materials & methods: Immunodeficient mice were conditioned by total body irradiation and transplanted with human CD34+ fetal liver cells. Peripheral blood, spleen and bone marrow were harvested, and levels of human lymphohematopoietic cells were determined by flow cytometry. Results: Supplementation with hGH elevated human lymphohematopoietic chimerism by more than twofold. Treatment with hGH resulted in significantly increased reconstitution of human B cells and myeloid cells in lymphoid organs, enhanced human erythropoiesis in the bone morrow, and improved engraftment of human hematopoietic stem cells. Conclusion: hGH supplementation promotes human lymphohematopoietic reconstitution in humanized mice.
Collapse
Affiliation(s)
- Siwen Zhang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Guixia Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Huimin Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Bing Chen
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wei Fan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Wenshu Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yanhong Shan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Liguang Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, & Department of Endocrinology & Metabolism, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| |
Collapse
|
3
|
Quantitation of protein post-translational modifications using isobaric tandem mass tags. Bioanalysis 2015; 7:383-400. [PMID: 25697195 DOI: 10.4155/bio.14.296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are known to modulate many cellular processes and their qualitative and quantitative evaluation is fundamental for understanding the mechanisms of biological events. Over the past decade, improvements in sample preparation techniques and enrichment strategies, the development of quantitative labeling strategies, the launch of a new generation of mass spectrometers and the creation of bioinformatics tools for the interrogation of ever larger datasets has established MS-based quantitative proteomics as a powerful workflow for global proteomics, PTM analysis and the elucidation of key biological mechanisms. With the advantage of their multiplexing capacity and the flexibility of an ever-growing family of different peptide-reactive groups, isobaric tandem mass tags facilitate quantitative proteomics and PTM experiments and enable higher sample throughput. In this review, we focus on the technical concept and utility of the isobaric tandem mass tag labeling approach to PTM analysis, including phosphorylation, glycosylation and S-nitrosylation.
Collapse
|
4
|
Supercritical synthesis of poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites for real-time monitoring of protein release. Drug Deliv Transl Res 2015; 5:268-74. [PMID: 25809936 DOI: 10.1007/s13346-015-0225-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A supercritical carbon dioxide (SCC)-assisted process was developed to synthesize protein-supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile-initiated in situ polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90 ± 1 °C, 1200 psi over 6 h in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35 ± 1 °C over additional 2 h in SCC. The formation of PNCs was ascertained through ultraviolet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry.
Collapse
|
5
|
Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, Zhao Z. Mass spectrometry methodology in lipid analysis. Int J Mol Sci 2014; 15:10492-507. [PMID: 24921707 PMCID: PMC4100164 DOI: 10.3390/ijms150610492] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS) is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease.
Collapse
Affiliation(s)
- Lin Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Jian'an Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Shaoxiang Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| |
Collapse
|
6
|
López EG, Ramírez EGR, Gúzman OG, Calva GC, Ariza-Castolo A, Pérez-Vargas J, Rodríguez HGM. MALDI-TOF characterization of hGH1 produced by hairy root cultures of Brassica oleracea var. italica grown in an airlift with mesh bioreactor. Biotechnol Prog 2013; 30:161-71. [PMID: 24124083 DOI: 10.1002/btpr.1829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/26/2013] [Indexed: 01/01/2023]
Abstract
Expression systems based on plant cells, tissue, and organ cultures have been investigated as an alternative for production of human therapeutic proteins in bioreactors. In this work, hairy root cultures of Brassica oleracea var. italica (broccoli) were established in an airlift with mesh bioreactor to produce isoform 1 of the human growth hormone (hGH1) as a model therapeutic protein. The hGH1 cDNA was cloned into the pCAMBIA1105.1 binary vector to induce hairy roots in hypocotyls of broccoli plantlets via Agrobacterium rhizogenes. Most of the infected plantlets (90%) developed hairy roots when inoculated before the appearance of true leaves, and keeping the emerging roots attached to hypocotyl explants during transfer to solid Schenk and Hildebrandt medium. The incorporation of the cDNA into the hairy root genome was confirmed by PCR amplification from genomic DNA. The expression and structure of the transgenic hGH1 was assessed by ELISA, western blot, and MALDITOF-MS analysis of the purified protein extracted from the biomass of hairy roots cultivated in bioreactor for 24 days. Production of hGH1 was 5.1 ± 0.42 µg/g dry weight (DW) for flask cultures, and 7.8 ± 0.3 µg/g DW for bioreactor, with productivity of 0.68 ± 0.05 and 1.5 ± 0.06 µg/g DW*days, respectively, indicating that the production of hGH1 was not affected by the growth rate, but might be affected by the culture system. These results demonstrate that hairy root cultures of broccoli have potential as an alternative expression system for production of hGH1, and might also be useful for production of other therapeutic proteins.
Collapse
Affiliation(s)
- Edgar García López
- Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, México Distrito Federal, CP, 07360
| | | | | | | | | | | | | |
Collapse
|
7
|
Wei Y, Li S, Wang J, Shu C, Liu J, Xiong S, Song J, Zhang J, Zhao Z. Polystyrene Spheres-Assisted Matrix-Assisted Laser Desorption Ionization Mass Spectrometry for Quantitative Analysis of Plasma Lysophosphatidylcholines. Anal Chem 2013; 85:4729-34. [DOI: 10.1021/ac400452k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | - Jianwen Song
- Key Laboratory of Cell Proliferation
and Regulation Biology, Ministry of Education, Institute of Cell Biology,
College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation
and Regulation Biology, Ministry of Education, Institute of Cell Biology,
College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
8
|
Ye H, Boyne MT, Buhse LF, Hill J. Direct Approach for Qualitative and Quantitative Characterization of Glycoproteins Using Tandem Mass Tags and an LTQ Orbitrap XL Electron Transfer Dissociation Hybrid Mass Spectrometer. Anal Chem 2013; 85:1531-9. [DOI: 10.1021/ac3026465] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongping Ye
- U.S. Food and Drug Administration, CDER, DPA, St. Louis, Missouri 63101,
United States
| | - Michael T. Boyne
- U.S. Food and Drug Administration, CDER, DPA, St. Louis, Missouri 63101,
United States
| | - Lucinda F. Buhse
- U.S. Food and Drug Administration, CDER, DPA, St. Louis, Missouri 63101,
United States
| | - John Hill
- U.S. Food and Drug Administration, CDER, ONDQA/DPAII, Silver Spring, Maryland
20993, United States
| |
Collapse
|
9
|
Gucinski AC, Boyne MT. Evaluation of Intact Mass Spectrometry for the Quantitative Analysis of Protein Therapeutics. Anal Chem 2012; 84:8045-51. [DOI: 10.1021/ac301949j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ashley C. Gucinski
- Division
of Pharmaceutical Research, Office of Testing and Research, Center
for Drug Evaluation and Research, U.S. Food and Drug Administration, 1114 Market Street, Room 1002, St. Louis,
Missouri 63101, United States
| | - Michael T. Boyne
- Division
of Pharmaceutical Research, Office of Testing and Research, Center
for Drug Evaluation and Research, U.S. Food and Drug Administration, 1114 Market Street, Room 1002, St. Louis,
Missouri 63101, United States
| |
Collapse
|
10
|
Manuilov AV, Radziejewski CH, Lee DH. Comparability analysis of protein therapeutics by bottom-up LC-MS with stable isotope-tagged reference standards. MAbs 2011; 3:387-95. [PMID: 21654206 PMCID: PMC3218535 DOI: 10.4161/mabs.3.4.16237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 04/30/2011] [Indexed: 01/16/2023] Open
Abstract
Comparability studies lie at the heart of assessments that evaluate differences amongst manufacturing processes and stability studies of protein therapeutics. Low resolution chromatographic and electrophoretic methods facilitate quantitation, but do not always yield detailed insight into the effect of the manufacturing change or environmental stress. Conversely, mass spectrometry (MS) can provide high resolution information on the molecule, but conventional methods are not very quantitative. This gap can be reconciled by use of a stable isotope-tagged reference standard (SITRS), a version of the analyte protein that is uniformly labeled (13)C6-arginine and (13)C6-lysine. The SITRS serves as an internal control that is trypsin-digested and analyzed by liquid chromatography (LC)-MS with the analyte sample. The ratio of the ion intensities of each unlabeled and labeled peptide pair is then compared to that of other sample(s). A comparison of these ratios provides a readily accessible way to spot even minute differences among samples. In a study of a monoclonal antibody (mAb) spiked with varying amounts of the same antibody bearing point mutations, peptides containing the mutations were readily identified and quantified at concentrations as low as 2% relative to unmodified peptides. The method is robust, reproducible and produced a linear response for every peptide that was monitored. The method was also successfully used to distinguish between two batches of a mAb that were produced in two different cell lines while two batches produced from the same cell line were found to be highly comparable. Finally, the use of the SITRS method in the comparison of two stressed mAb samples enabled the identification of sites susceptible to deamidation and oxidation, as well as their quantitation. The experimental results indicate that use of a SITRS in a peptide mapping experiment with MS detection enables sensitive and quantitative comparability studies of proteins at high resolution.
Collapse
Affiliation(s)
- Anton V Manuilov
- Process Sciences Department, Abbott Bioresearch Center, Worcester, MA, USA
| | | | | |
Collapse
|