1
|
Zhu Q, El-Mergawy RG, Zhou Y, Chen C, Heinemann SH, Schönherr R, Robaa D, Sippl W, Scriba GKE. Stereospecific capillary electrophoresis assays using pentapeptide substrates for the study of Aspergillus nidulans methionine sulfoxide reductase A and mutant enzymes. Electrophoresis 2016; 37:2083-90. [PMID: 27145186 DOI: 10.1002/elps.201600181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Stereospecific capillary electrophoresis-based methods for the analysis of methionine sulfoxide [Met(O)]-containing pentapeptides were developed in order to investigate the reduction of Met(O)-containing peptide substrates by recombinant Aspergillus nidulans methionine sulfoxide reductase A (MsrA) as well as enzymes carrying mutations in position Glu99 and Asp134. The separation of the diastereomers of the N-acetylated, C-terminally 2,4-dinitrophenyl (Dnp)-labeled pentapeptides ac-Lys-Phe-Met(O)-Lys-Lys-Dnp, ac-Lys-Asp-Met(O)-Asn-Lys-Dnp and ac-Lys-Asn-Met(O)-Asp-Lys-Dnp was achieved in 50 mM Tris-HCl buffers containing sulfated β-CD in fused-silica capillaries, while the diastereomer separation of ac-Lys-Asp-Met(O)-Asp-Lys-Dnp was achieved by sulfated β-CD-mediated MEKC. The methods were validated with regard to range, linearity, accuracy, limits of detection and quantitation as well as precision. Subsequently, the substrates were incubated with wild-type MsrA and three mutants in the presence of dithiothreitol as reductant. Wild-type MsrA displayed the highest activity towards all substrates compared to the mutants. Substitution of Glu99 by Gln resulted in the mutant with the lowest activity towards all substrates except for ac-Lys-Asn-Met(O)-Asp-Lys-Dnp, while replacement Asn for Asp134 lead to a higher activity towards ac-Lys-Asp-Met(O)-Asn-Lys-Dnp compared with the Glu99 mutant. The mutant with Glu instead of Asp134 was the most active among the mutant enzymes. Molecular modeling indicated that the conserved Glu99 residue is buried in the Met-S-(O) groove, which might contribute to the correct placing of substrates and, consequently, to the catalytic activity of MsrA, while Asp134 did not form hydrogen bonds with the substrates but only within the enzyme.
Collapse
Affiliation(s)
- Qingfu Zhu
- Department of Pharmaceutical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Rabab G El-Mergawy
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Yuzhen Zhou
- Department of Pharmaceutical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Chunyang Chen
- Department of Pharmaceutical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, University of Halle, Halle, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, University of Halle, Halle, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
|
3
|
Achilli C, Ciana A, Minetti G. The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives. Biofactors 2015; 41:135-52. [PMID: 25963551 DOI: 10.1002/biof.1214] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/19/2015] [Indexed: 01/26/2023]
Abstract
L-Methionine (L-Met) is the only sulphur-containing proteinogenic amino acid together with cysteine. Its importance is highlighted by it being the initiator amino acid for protein synthesis in all known living organisms. L-Met, free or inserted into proteins, is sensitive to oxidation of its sulfide moiety, with formation of L-Met sulfoxide. The sulfoxide could not be inserted into proteins, and the oxidation of L-Met in proteins often leads to the loss of biological activity of the affected molecule. Key discoveries revealed the existence, in rats, of a metabolic pathway for the reduction of free L-Met sulfoxide and, later, in Escherichia coli, of the enzymatic reduction of L-Met sulfoxide inserted in proteins. Upon oxidation, the sulphur atom becomes a new stereogenic center, and two stable diastereoisomers of L-Met sulfoxide exist. A fundamental discovery revealed the existence of two unrelated families of enzymes, MsrA and MsrB, whose members display opposite stereospecificity of reduction for the two sulfoxides. The importance of Msrs is additionally emphasized by the discovery that one of the only 25 selenoproteins expressed in humans is a Msr. The milestones on the road that led to the discovery and characterization of this group of antioxidant enzymes are recounted in this review.
Collapse
Affiliation(s)
- Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Annarita Ciana
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giampaolo Minetti
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Zhu Q, Heinemann SH, Schönherr R, Scriba GKE. Capillary electrophoresis separation of peptide diastereomers that contain methionine sulfoxide by dual cyclodextrin-crown ether systems. J Sep Sci 2014; 37:3548-54. [PMID: 25216019 DOI: 10.1002/jssc.201400825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022]
Abstract
A dual-selector system employing achiral crown ethers in combination with cyclodextrins has been developed for the separation of peptide diastereomers that contain methionine sulfoxide. The combinations of the crown ethers 15-crown-5, 18-crown-6, Kryptofix® 21 and Kryptofix® 22 and β-cyclodextrin, carboxymethyl-β-cyclodextrin, and sulfated β-cyclodextrin were screened at pH 2.5 and pH 8.0 using a 40/50.2 cm, 50 μm id fused-silica capillary and a separation voltage of 25 kV. No diastereomer separation was observed in the sole presence of crown ethers, while only sulfated β-cyclodextrin was able to resolve some peptide diastereomers at pH 8.0. Depending on the amino acid sequence of the peptide and the applied cyclodextrin, the addition of crown ethers, especially the Krpytofix® diaza-crown ethers, resulted in significantly enhanced chiral recognition. Keeping one selector of the dual system constant, increasing concentrations of the second selector resulted in increased peak resolution and analyte migration time for peptide-crown ether-cyclodextrin combinations. The simultaneous diastereomer separation of three structurally related peptides was achieved using the dual selector system.
Collapse
Affiliation(s)
- Qingfu Zhu
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | |
Collapse
|
5
|
Zhu Q, Huo X, Heinemann SH, Schönherr R, El-Mergawy R, Scriba GKE. Experimental design-guided development of a stereospecific capillary electrophoresis assay for methionine sulfoxide reductase enzymes using a diastereomeric pentapeptide substrate. J Chromatogr A 2014; 1359:224-9. [PMID: 25064531 DOI: 10.1016/j.chroma.2014.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/16/2014] [Accepted: 07/06/2014] [Indexed: 02/05/2023]
Abstract
A capillary electrophoresis method has been developed and validated to evaluate the stereospecific activity of recombinant human methionine sulfoxide reductase enzymes employing the C-terminally dinitrophenyl-labeled N-acetylated pentapeptide ac-KIFM(O)K-Dnp as substrate (M(O)=methionine sulfoxide). The separation of the ac-KIFM(O)K-Dnp diastereomers and the reduced peptide ac-KIFMK-Dnp was optimized using experimental design with regard to the buffer pH, buffer concentration, sulfated β-cyclodextrin and 15-crown-5 concentration as well as capillary temperature and separation voltage. A fractional factorial response IV design was employed for the identification of the significant factors and a five-level circumscribed central composite design for the final method optimization. Resolution of the peptide diastereomers as well as analyte migration time served as responses in both designs. The resulting optimized conditions included 50mM Tris buffer, pH 7.85, containing 5mM 15-crown-5 and 14.3mg/mL sulfated β-cyclodextrin, at an applied voltage of 25kV and a capillary temperature of 21.5°C. The assay was subsequently applied to the determination of the stereospecificity of recombinant human methionine sulfoxide reductases A and B2. The Michaelis-Menten kinetic data were determined. The pentapeptide proved to be a good substrate for both enzymes. Furthermore, the first separation of methionine sulfoxide peptide diastereomers is reported.
Collapse
Affiliation(s)
- Qingfu Zhu
- Department of Pharmaceutical Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Xingyu Huo
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Stefan H Heinemann
- Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Roland Schönherr
- Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Rabab El-Mergawy
- Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
6
|
Stereospecific electrophoretically mediated microanalysis assay for methionine sulfoxide reductase enzymes. Anal Bioanal Chem 2014; 406:1723-9. [DOI: 10.1007/s00216-013-7596-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/14/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022]
|
7
|
Zhu Q, El-Mergawy RG, Heinemann SH, Schönherr R, Jáč P, Scriba GKE. Stereospecific micellar electrokinetic chromatography assay of methionine sulfoxide reductase activity employing a multiple layer coated capillary. Electrophoresis 2013; 34:2712-7. [DOI: 10.1002/elps.201300147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Qingfu Zhu
- Department of Pharmaceutical Chemistry; Friedrich Schiller University Jena; Jena; Germany
| | - Rabab G. El-Mergawy
- Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Jena; Germany
| | - Stefan H. Heinemann
- Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Jena; Germany
| | - Roland Schönherr
- Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Jena; Germany
| | - Pavel Jáč
- Department of Pharmaceutical Chemistry; Friedrich Schiller University Jena; Jena; Germany
| | - Gerhard K. E. Scriba
- Department of Pharmaceutical Chemistry; Friedrich Schiller University Jena; Jena; Germany
| |
Collapse
|
8
|
Poinsot V, Carpéné MA, Bouajila J, Gavard P, Feurer B, Couderc F. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 2012; 33:14-35. [PMID: 22213525 DOI: 10.1002/elps.201100360] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes the most important articles that have been published on amino acid analysis using CE during the period from June 2009 to May 2011 and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138) and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121). We present new developments in amino acid analysis with CE, which are reported describing the use of lasers or light emitting diodes for fluorescence detection, conductimetry electrochemiluminescence detectors, mass spectrometry applications, and lab-on-a-chip applications using CE. In addition, we describe articles concerning clinical studies and neurochemical applications of these techniques.
Collapse
Affiliation(s)
- Véréna Poinsot
- Université Paul Sabatier, IMRCP, UMR 5623, Toulouse, France
| | | | | | | | | | | |
Collapse
|
9
|
Viglio S, Fumagalli M, Ferrari F, Bardoni A, Salvini R, Giuliano S, Iadarola P. Recent novel MEKC applications to analyze free amino acids in different biomatrices: 2009-2010. Electrophoresis 2011; 33:36-47. [DOI: 10.1002/elps.201100336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 11/07/2022]
|
10
|
Uthus EO, Picklo MJ. Obesity reduces methionine sulphoxide reductase activity in visceral adipose tissue. Free Radic Res 2011; 45:1052-60. [PMID: 21726174 DOI: 10.3109/10715762.2011.591793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visceral obesity is linked to insulin resistance and cardiovascular disease. A recent genetic study indicated that the gene locus for the anti-oxidant defense enzyme methionine sulphoxide reductase A (MsrA) is positively associated with the development of visceral adiposity. This work tested the hypothesis that Msr activity is diminished in visceral fat as a result of obesity. It used two animal models of obesity, wild-type rats fed a high-fat (45% of calories from fat) diet and Zucker rats fed a 10% fat calorie diet. The data indicate that MsrA activity was selectively reduced by ∼ 25% in the visceral adipose, but not subcutaneous adipose or liver, of both rat models as compared to control, wild type rats receiving a 10% fat calorie diet. MsrB activity was similarly reduced only in visceral fat. The data indicate that Msr activity is reduced by obesity and may alter oxidative stress signalling of obesity.
Collapse
Affiliation(s)
- Eric O Uthus
- USDA Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203-9034, USA
| | | |
Collapse
|