1
|
Dzhalilova DS, Kosyreva AM, Vyshnyakova PA, Tsvetkov IS, Zolotova NA, Miroshnichenko EA, Makarova O. Age-Specific Features of the Levels of Reference Proteins Actin, Tubulin, and GAPDH in Different Organs of Male Wistar Rats. Bull Exp Biol Med 2022; 173:481-485. [DOI: 10.1007/s10517-022-05565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/25/2022]
|
2
|
Zhang K, Zhang J, Ding N, Zellmer L, Zhao Y, Liu S, Liao DJ. ACTB and GAPDH appear at multiple SDS-PAGE positions, thus not suitable as reference genes for determining protein loading in techniques like Western blotting. Open Life Sci 2021; 16:1278-1292. [PMID: 34966852 PMCID: PMC8669867 DOI: 10.1515/biol-2021-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
We performed polyacrylamide gel electrophoresis of human proteins with sodium dodecyl sulfate, isolated proteins at multiple positions, and then used liquid chromatography and tandem mass spectrometry (LC-MS/MS) to determine the protein identities. Although beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are 41.7 and 36 kDa proteins, respectively, LC-MS/MS identified their peptides at all the positions studied. The National Center for Biotechnology Information (USA) database lists only one ACTB mRNA but five GAPDH mRNAs and one noncoding RNA. The five GAPDH mRNAs encode three protein isoforms, while our bioinformatics analysis identified a 17.6 kDa isoform encoded by the noncoding RNA. All LC-MS/MS-identified GAPDH peptides at all positions studied are unique, but some of the identified ACTB peptides are shared by ACTC1, ACTBL2, POTEF, POTEE, POTEI, and POTEJ. ACTC1 and ACTBL2 belong to the ACT family with significant similarities to ACTB in protein sequence, whereas the four POTEs are ACTB-containing chimeric genes with the C-terminus of their proteins highly similar to the ACTB. These data lead us to conclude that GAPDH and ACTB are poor reference genes for determining the protein loading in such techniques as Western blotting, a leading role these two genes have been playing for decades in biomedical research.
Collapse
Affiliation(s)
- Keyin Zhang
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
| | - Ju Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing 100015 , People’s Republic of China
| | - Nan Ding
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing 100015 , People’s Republic of China
| | - Lucas Zellmer
- Department of Medicine, Hennepin County Medical Center , 730 South 8th St. , Minneapolis , MN 55415 , United States of America
| | - Yan Zhao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
| | - Siqi Liu
- Beijing Genomic Institute, Building 11 of Beishan Industrial Zone, Tantian District , Shengzhen 518083 , Guangdong Province , People’s Republic of China
| | - Dezhong Joshua Liao
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
- Department of Clinical Biochemistry, Guizhou Medical University Hospital , Guiyang 550004 , Guizhou Province , People’s Republic of China
| |
Collapse
|
3
|
Feng Y, Wang R, Su D, Zhai Y, Wang L, Yu L, Zhang Y, Ma X, Ma F. Identifying new sperm Western blot loading controls. Andrologia 2021; 53:e14226. [PMID: 34478154 DOI: 10.1111/and.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
The measurement of protein expression level plays a pivotal role in both biological and medical studies. Housekeeping proteins, generally encoded by housekeeping genes are used as loading control proteins to normalize protein expression. Obviously, proper reference standards are essential for adequate analysis of protein expression. However, our study showed that the widely used normalisation proteins, whose expression levels varied greatly among sperm samples, were unsuitable for data standardisation. To uncover the proteins steadily expressed in sperm, we analysed several published transcriptome data of sperm. Seven proteins whose expression levels were relatively stable (co-efficient variation values less than 0.35) were selected and further evaluated by quantitative real-time polymerase chain reaction, Western Blot (WB) and immunocytochemistry. Our results showed that among the classical housekeeping proteins, only β-tubulin remained constant in sperm samples from 85 individuals. Compared with other classical housekeeping proteins such as glyceraldehyde 3-phosphate dehydrogenase, actin and histone H3, Cullin-1 (CUL1) and F-box only protein 7 (FBXO7) seemed to be more suitable to be used as internal controls for WB in sperm protein studies. Combined with the locations of these proteins, CUL1 and FBXO7 were suggested to be used as a housekeeping protein for total proteins.
Collapse
Affiliation(s)
- Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruohan Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongmei Su
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yujia Zhai
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Yu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Ma
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liu Y, Xing H, Yokoi F, Vaillancourt DE, Li Y. Investigating the role of striatal dopamine receptor 2 in motor coordination and balance: Insights into the pathogenesis of DYT1 dystonia. Behav Brain Res 2021; 403:113137. [PMID: 33476687 DOI: 10.1016/j.bbr.2021.113137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset, generalized dystonia. Most DYT1 dystonia patients have a heterozygous trinucleotide GAG deletion in DYT1 or TOR1A gene, with a loss of a glutamic acid residue of the protein torsinA. DYT1 dystonia patients show reduced striatal dopamine D2 receptor (D2R) binding activity. We previously reported reduced striatal D2R proteins and impaired corticostriatal plasticity in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice. It remains unclear how the D2R reduction contributes to the pathogenesis of DYT1 dystonia. Recent knockout studies indicate that D2R on cholinergic interneurons (Chls) has a significant role in corticostriatal plasticity, while D2R on medium spiny neurons (MSNs) plays a minor role. To determine how reduced D2Rs on ChIs and MSNs affect motor performance, we generated ChI- or MSN-specific D2R conditional knockout mice (Drd2 ChKO or Drd2 sKO). The striatal ChIs in the Drd2 ChKO mice showed an increased firing frequency and impaired quinpirole-induced inhibition, suggesting a reduced D2R function on the ChIs. Drd2 ChKO mice had an age-dependent deficient performance on the beam-walking test similar to the Dyt1 KI mice. The Drd2 sKO mice, conversely, had a deficit on the rotarod but not the beam-walking test. Our findings suggest that D2Rs on Chls and MSNs have critical roles in motor control and balance. The similarity of the beam-walking deficit between the Drd2 ChKO and Dyt1 KI mice supports our earlier notion that D2R reduction on striatal ChIs contributes to the pathophysiology and the motor symptoms of DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
5
|
Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, Wang JJ, Han Y, Zhou YB, Zhang F, Sun HJ, Gao XY, Chen Q, Li YH, Kang YM, Zhu GQ. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 2019; 9:1698795. [PMID: 31839907 PMCID: PMC6896498 DOI: 10.1080/20013078.2019.1698795] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) plays crucial roles in vascular remodelling and stiffening in hypertension. Vascular adventitial fibroblasts are a key regulator of vascular wall function and structure. This study is designed to investigate the roles of adventitial fibroblasts-derived extracellular vesicles (EVs) in VSMC proliferation and vascular remodelling in normotensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR), an animal model of human essential hypertension. EVs were isolated from aortic adventitial fibroblasts of WKY (WKY-EVs) and SHR (SHR-EVs). Compared with WKY-EVs, miR155-5p content was reduced, while angiotensin-converting enzyme (ACE) content was increased in SHR-EVs. WKY-EVs inhibited VSMC proliferation of SHR, which was prevented by miR155-5p inhibitor. SHR-EVs promoted VSMC proliferation of both strains, which was enhanced by miR155-5p inhibitor, but abolished by captopril or losartan. Dual luciferase reporter assay showed that ACE was a target gene of miR155-5p. MiR155-5p mimic or overexpression inhibited VSMC proliferation and ACE upregulation of SHR. WKY-EVs reduced ACE mRNA and protein expressions while SHR-EVs only increased ACE protein level in VSMCs of both strains. However, the SHR-EVs-derived from the ACE knockdown-treated adventitial fibroblasts lost the roles in promoting VSMC proliferation and ACE upregulation. Systemic miR155-5p overexpression reduced vascular ACE, angiotensin II and proliferating cell nuclear antigen levels, and attenuated hypertension and vascular remodelling in SHR. Repetitive intravenous injection of SHR-EVs increased blood pressure and vascular ACE contents, and promoted vascular remodelling in both strains, while WKY-EVs reduced vascular ACE contents and attenuated hypertension and vascular remodelling in SHR. We concluded that WKY-EVs-mediated miR155-5p transfer attenuates VSMC proliferation and vascular remodelling in SHR via suppressing ACE expression, while SHR-EVs-mediated ACE transfer promotes VSMC proliferation and vascular remodelling.
Collapse
Affiliation(s)
- Xing-Sheng Ren
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Qiu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Jian Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Ya Gao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Yukawa T, Iwakura Y, Takei N, Saito M, Watanabe Y, Toyooka K, Igarashi M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Iritani S, Niwa SI, Takeuchi R, Takahashi H, Kakita A, Someya T, Nawa H. Pathological alterations of chondroitin sulfate moiety in postmortem hippocampus of patients with schizophrenia. Psychiatry Res 2018; 270:940-946. [PMID: 30551347 DOI: 10.1016/j.psychres.2018.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Perineuronal nets comprise chondroitin sulfate moieties and their core proteins, and their neuropathological alterations have been implicated in schizophrenia. To explore the molecular mechanism of the perineuronal net impairments in schizophrenia, we measured the immunoreactivity of chondroitin sulfate moieties, major components of perineuronal nets, in three brain regions (postmortem dorsolateral prefrontal cortex, caudate nucleus, and hippocampus) of schizophrenia patients and control subjects. Immunoblotting for chondroitin 4-sulfate and chondroitin 6-sulfate moieties revealed a significant increase in intensity of a 180 kD band of chondroitin 4-sulfate immunoreactivity in the hippocampus of patients, although we detected no significant alteration in their immunoreactivities with any other molecular sizes or in other brain regions. The levels of immunoreactivity were not correlated with postmortem interval, age, or storage time. We failed to find such an increase in a similar molecular range of the chondroitin 4-sulfate immunoreactivity in the hippocampus of the rats chronically treated with haloperidol. These results suggest that the level alteration of the chondroitin 4-sulfate moiety might contribute to the perineuronal net abnormality found in patients with schizophrenia.
Collapse
Affiliation(s)
- Takayuki Yukawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan; Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8510, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan
| | - Mami Saito
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan; Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8510, Japan
| | - Kazuhiko Toyooka
- Minamihama Hospital, 4540, Shimami-cho, Kita-ku Niigata, Niigata 950-3102, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences and Trans-disciplinary Research Program, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8510, Japan
| | - Kazuhiro Niizato
- Tokyo Metropolitan Matsuzawa Hospital, 2-1-1, Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Kenichi Oshima
- Tokyo Metropolitan Matsuzawa Hospital, 2-1-1, Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1- Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1- Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1- Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Akira Wada
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1- Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1- Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Shuji Iritani
- Tokyo Metropolitan Matsuzawa Hospital, 2-1-1, Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; Department of Mental Health, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shin-Ichi Niwa
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1- Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Ryoko Takeuchi
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan
| | - Hitoshi Takahashi
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan
| | - Akiyoshi Kakita
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8510, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku Niigata, Niigata 951-8585, Japan.
| |
Collapse
|
7
|
Roles of microRNA in the immature immune system of neonates. Cancer Lett 2018; 433:99-106. [DOI: 10.1016/j.canlet.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
|
8
|
Moritz CP. Tubulin or Not Tubulin: Heading Toward Total Protein Staining as Loading Control in Western Blots. Proteomics 2018; 17. [PMID: 28941183 DOI: 10.1002/pmic.201600189] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/13/2017] [Indexed: 12/30/2022]
Abstract
Western blotting is an analytical method widely used for detecting and (semi-)quantifying specific proteins in given samples. Western blots are continuously applied and developed by the protein community. This review article focuses on a significant, but not yet well-established, improvement concerning the internal loading control as a prerequisite to accurately quantifying Western blots. Currently, housekeeping proteins (HKPs) like actin, tubulin, or GAPDH are often used to check for equal loading or to compensate potential loading differences. However, this loading control has multiple drawbacks. Staining of the total protein on the blotting membrane has emerged as a better loading control. Total protein staining (TPS) represents the actual loading amount more accurately than HKPs due to minor technical and biological variation. Further, the broad dynamic range of TPS solves the issue of HKPs that commonly fail to show loading differences above small loading amounts of 0.5-10 μg. Although these and further significant advantages have been demonstrated over the past 10 years, only a small percentage of laboratories take advantage of it. The objective of this review article is to collect and compare information about TPS options and to invite users to reconsider their applied loading control. Nine benefits of TPS are discussed and seven different variants are critically evaluated by comparing technical details. Consequently, this review article offers an orientation in selecting the appropriate staining type. I conclude that TPS should be the preferred loading control in future Western blot approaches.
Collapse
Affiliation(s)
- Christian P Moritz
- Synaptopathies and Autoantibodies, Faculty of Medicine, University Jean Monnet, Saint-Étienne, France.,Institut NeuroMyoGène, Team Synaptopathies and Autoantibodies, Lyon/Saint-Étienne, France
| |
Collapse
|
9
|
Wang M, Zheng KY, Lv SW, Zou HF, Liu HS, Yan GL, Liu AD, Fei XF. Preparation and characterization of universal Fe3O4@SiO2/CdTe nanocomposites for rapid and facile detection and separation of membrane proteins. NEW J CHEM 2018. [DOI: 10.1039/c7nj04484d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The separation and enrichment of cell membrane proteins was achieved by the construction of bi-functional magnetic fluorescent nanoprobes.
Collapse
Affiliation(s)
- Min Wang
- Development and Molecular Pharmacology Laboratory of Active Polysaccharides
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Ke-yan Zheng
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shao-wu Lv
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Hai-feng Zou
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Hong-sen Liu
- Development and Molecular Pharmacology Laboratory of Active Polysaccharides
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Gang-lin Yan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Ai-dong Liu
- Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine
- Changchun 130033
- China
| | - Xiao-fang Fei
- Development and Molecular Pharmacology Laboratory of Active Polysaccharides
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
10
|
Banu H, Anand D, Bedekar MK, Rajendran KV, Makesh M. Monoclonal antibodies against recombinant GAPDH of Edwardsiella tarda reveal the conserved nature of the protein. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1309642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Husne Banu
- ICAR – Central Institute of Fisheries Education, Mumbai, India
| | - Deepika Anand
- ICAR – Central Institute of Fisheries Education, Mumbai, India
| | - Megha K Bedekar
- ICAR – Central Institute of Fisheries Education, Mumbai, India
| | - K. V Rajendran
- ICAR – Central Institute of Fisheries Education, Mumbai, India
| | - M. Makesh
- ICAR – Central Institute of Fisheries Education, Mumbai, India
- ICAR – Central Institute of Brackishwater Aquaculture, Chennai, India
| |
Collapse
|
11
|
Yu HR, Hsu TY, Huang HC, Kuo HC, Li SC, Yang KD, Hsieh KS. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults. Front Immunol 2016; 7:615. [PMID: 28066425 PMCID: PMC5165026 DOI: 10.3389/fimmu.2016.00615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Hsin-Chun Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Kuender D Yang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| |
Collapse
|
12
|
Selection of Suitable Reference Genes for Analysis of Salivary Transcriptome in Non-Syndromic Autistic Male Children. Int J Mol Sci 2016; 17:ijms17101711. [PMID: 27754318 PMCID: PMC5085743 DOI: 10.3390/ijms17101711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 02/08/2023] Open
Abstract
Childhood autism is a severe form of complex genetically heterogeneous and behaviorally defined set of neurodevelopmental diseases, collectively termed as autism spectrum disorders (ASD). Reverse transcriptase quantitative real-time PCR (RT-qPCR) is a highly sensitive technique for transcriptome analysis, and it has been frequently used in ASD gene expression studies. However, normalization to stably expressed reference gene(s) is necessary to validate any alteration reported at the mRNA level for target genes. The main goal of the present study was to find the most stable reference genes in the salivary transcriptome for RT-qPCR analysis in non-syndromic male childhood autism. Saliva samples were obtained from nine drug naïve non-syndromic male children with autism and also sex-, age-, and location-matched healthy controls using the RNA-stabilizer kit from DNA Genotek. A systematic two-phased measurement of whole saliva mRNA levels for eight common housekeeping genes (HKGs) was carried out by RT-qPCR, and the stability of expression for each candidate gene was analyzed using two specialized algorithms, geNorm and NormFinder, in parallel. Our analysis shows that while the frequently used HKG ACTB is not a suitable reference gene, the combination of GAPDH and YWHAZ could be recommended for normalization of RT-qPCR analysis of salivary transcriptome in non-syndromic autistic male children.
Collapse
|
13
|
Pei C, Qin S, Wang M, Zhang S. Regulatory mechanism of human vascular smooth muscle cell phenotypic transformation induced by NELIN. Mol Med Rep 2015; 12:7310-6. [PMID: 26458985 PMCID: PMC4626202 DOI: 10.3892/mmr.2015.4365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 02/19/2015] [Indexed: 11/29/2022] Open
Abstract
Vascular disorders, including hypertension, atherosclerosis and restenosis, arise from dysregulation of vascular smooth muscle cell (VSMC) differentiation, which can be controlled by regulatory factors. The present study investigated the regulatory mechanism of the phenotypic transformation of human VSMCs by NELIN in order to evaluate its potential as a preventive and therapeutic of vascular disorders. An in vitro model of NELIN-overexpressing VSMCs was prepared by transfection with a lentiviral (LV) vector (NELIN-VSMCs) and NELIN was slienced using an a lentiviral vector with small interfering (si)RNA in another group (LV-NELIN-siRNA-VSMCs). The effects of NELIN overexpression or knockdown on the phenotypic transformation of human VSMCs were observed, and its regulatory mechanism was studied. Compared with the control group, cells in the NELIN-VSMCs group presented a contractile phenotype with a significant increase of NELIN mRNA, NELIN protein, smooth muscle (SM)α-actin and total Ras homolog gene family member A (RhoA) protein expression. The intra-nuclear translocation of SMα-actin-serum response factor (SMα-actin-SRF) occurred in these cells simultaneously. Following exposure to Rho kinsase inhibitor Y-27632, SRF and SMα-actin expression decreased. However, cells in the LV-NELIN-siRNA-VSMCs group presented a synthetic phenotype, and the expression of NELIN mRNA, NELIN protein, SMα-actin protein and total RhoA protein was decreased. The occurrence of SRF extra-nuclear translocation was observed. In conclusion, the present study suggested that NELIN was able to activate regulatory factors of SMα-actin, RhoA and SRF successively in human VSMCs cultured in vitro. Furthermore, NELIN-induced phenotypic transformation of human VSMCs was regulated via the RhoA/SRF signaling pathway. The results of the present study provide a foundation for the use of NELIN in preventive and therapeutic treatment of vascular remodeling diseases, including varicosity and atherosclerosis.
Collapse
Affiliation(s)
- Changan Pei
- Department of Vascular Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Shiyong Qin
- Department of Vascular Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Minghai Wang
- Department of Vascular Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Shuguang Zhang
- Department of Vascular Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
14
|
Pascoe MC, Howells DW, Crewther DP, Carey LM, Crewther SG. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat. Neuropsychiatr Dis Treat 2015; 11:153-64. [PMID: 25609971 PMCID: PMC4298295 DOI: 10.2147/ndt.s72925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs) are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo)-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo-associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes.
Collapse
Affiliation(s)
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | | | - Leeanne M Carey
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia ; Department of Occupational Therapy, School of Allied Health La Trobe University, VIC, Australia
| | - Sheila G Crewther
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Vigelsø A, Dybboe R, Hansen CN, Dela F, Helge JW, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985) 2014; 118:386-94. [PMID: 25429098 DOI: 10.1152/japplphysiol.00840.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reference proteins (RP) or the total protein (TP) loaded is used to correct for uneven loading and/or transfer in Western blotting. However, the signal sensitivity and the influence of physiological conditions may question the normalization methods. Therefore, three widely used reference proteins [β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and α-tubulin], as well as TP loaded measured by Stain-Free technology (SF) as normalization tool were tested. This was done using skeletal muscle samples from men subjected to physiological conditions often investigated in applied physiology where the intervention has been suggested to impede normalization (ageing, muscle atrophy, and different muscle fiber type composition). The linearity of signal and the methodological variation coefficient was obtained. Furthermore, the inter- and intraindividual variation in signals obtained from SF and RP was measured in relation to ageing, muscle atrophy, and different muscle fiber type composition, respectively. A stronger linearity of SF and β-actin compared with GAPDH and α-tubulin was observed. The methodological variation was relatively low in all four methods (4-11%). Protein level of β-actin and GAPDH was lower in older men compared with young men. In conclusion, β-actin, GAPDH, and α-tubulin may not be used for normalization in studies that include subjects with a large age difference. In contrast, the RPs may not be affected in studies that include muscle wasting and differences in muscle fiber type. The novel SF technology adds lower variation to the results compared with the existing methods for correcting for loading inaccuracy in Western blotting of human skeletal muscle in applied physiology.
Collapse
Affiliation(s)
- Andreas Vigelsø
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Rie Dybboe
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Flemming Dela
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Jørn W Helge
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Amelia Guadalupe Grau
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
16
|
Yu HR, Kuo HC, Huang LT, Chen CC, Tain YL, Sheen JM, Tiao MM, Huang HC, Yang KD, Ou CY, Hsu TY. L-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway. Immunology 2014; 143:184-92. [PMID: 24697328 DOI: 10.1111/imm.12300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023] Open
Abstract
In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Paediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiug, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Epicocconone staining: A powerful loading control for Western blots. Proteomics 2014; 14:162-8. [DOI: 10.1002/pmic.201300089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023]
|
18
|
Baumgartner R, Umlauf E, Veitinger M, Guterres S, Rappold E, Babeluk R, Mitulović G, Oehler R, Zellner M. Identification and validation of platelet low biological variation proteins, superior to GAPDH, actin and tubulin, as tools in clinical proteomics. J Proteomics 2013; 94:540-51. [DOI: 10.1016/j.jprot.2013.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/27/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022]
|
19
|
Li R, Shen Y. An old method facing a new challenge: re-visiting housekeeping proteins as internal reference control for neuroscience research. Life Sci 2013; 92:747-51. [PMID: 23454168 DOI: 10.1016/j.lfs.2013.02.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 01/09/2023]
Abstract
The study of specific target protein expression is often performed by western blotting, a commonly used method to measure the protein expression in neuroscience research by specific antibodies. Housekeeping proteins are used as an internal control for protein loading as well as reference in the western blotting analysis. This practice is based on the belief that such housekeeping genes are considered to be ubiquitously and constitutively expressed in every tissue and produce the minimal essential transcripts necessary for normal cellular function. The most commonly used housekeeping proteins are β-actin, β-tubulin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). However, recent studies have shown significant variation in some housekeeping genes both at the mRNA and protein levels in various neuropathological events, such as spinal cord injury and Alzheimer's diseases. Changes of housekeeping genes are also induced by non-neuronal diseases in various tissues. Therefore, these discoveries raise a potential concern regarding whether using a housekeeping protein as an internal standard for target protein analysis is an appropriate practice. This minireview will focus on (I) the effects of neuronal and non-neuronal diseases, experimental condition, and tissue-specific roles on alteration of housekeeping genes, and (II) alternative internal standards for gene and protein expression analysis.
Collapse
Affiliation(s)
- Rena Li
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA.
| | | |
Collapse
|
20
|
Hou PC, Yu HR, Kuo HC, Wang L, Lin LY, Sheen JM, Hsu TY, Ou CY, Jheng YJ, Yang KD, Cheng WH. Different modulating effects of adenosine on neonatal and adult polymorphonuclear leukocytes. ScientificWorldJournal 2012; 2012:387923. [PMID: 22919313 PMCID: PMC3415154 DOI: 10.1100/2012/387923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/21/2012] [Indexed: 01/09/2023] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are the major leukocytes in the circulation and play an important role in host defense. Intact PMN functions include adhesion, migration, phagocytosis, and reactive oxygen species (ROS) release. It has been known for a long time that adenosine can function as a modulator of adult PMN functions. Neonatal plasma has a higher adenosine level than that of adults; however, little is known about the modulating effects of adenosine on neonatal PMNs. The aim of this study was to investigate the effects of adenosine on neonatal PMN functions. We found that neonatal PMNs had impaired adhesion, chemotaxis, and ROS production abilities, but not phagocytosis compared to adult PMNs. As with adult PMNs, adenosine could suppress the CD11b expressions of neonatal PMNs, but had no significant suppressive effect on phagocytosis. In contrast to adult PMNs, adenosine did not significantly suppress chemotaxis and ROS production of neonatal PMNs. This may be due to impaired phagocyte reactions and a poor neonatal PMN response to adenosine. Adenosine may not be a good strategy for the treatment of neonatal sepsis because of impaired phagocyte reactions and poor response.
Collapse
Affiliation(s)
- Pei-Chen Hou
- Department of Nursing, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Niao-Sung district, Kaohsiung 833, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu Y, Wu M, He G, Zhang X, Li W, Gao Y, Li Z, Wang Z, Zhang C. Glyceraldehyde-3-phosphate dehydrogenase: a universal internal control for Western blots in prokaryotic and eukaryotic cells. Anal Biochem 2012; 423:15-22. [PMID: 22326796 DOI: 10.1016/j.ab.2012.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/08/2012] [Accepted: 01/16/2012] [Indexed: 02/01/2023]
Abstract
In the current study, we examined the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in a number of organisms and the stability of GAPDH under various conditions. Our results revealed that GAPDH is present in multiple Escherichia coli strains, the yeast strain GS115, Caenorhabditis elegans, rat PC12 cells, and both mouse and rat brain. Furthermore, GAPDH was stably expressed under different concentrations of inducer and at different times of induction in E. coli (BL21) cells and yeast GS115 cells. Stable expression of GAPDH protein was also observed in C.elegans and PC12 cells that were treated with different concentrations of paraquat or sodium sulfite, respectively. In addition, we were able to detect and identify the endogenous gapA protein in E.coli via immunoprecipitation and MALDI-TOF-MS analysis. Endogenous gapA protein and exogenously expressed (subcloned) GAPDH proteins were detected in E. coli BL21 but not for gapC. With the exception of gapC in E. coli, the various isoforms of GAPDH possessed enzymatic activity. Finally, sequence analysis revealed that the GAPDH proteins were 76% identical, with the exception of E. coli gapC. Taken together, our results indicate that GAPDH could be universally used as an internal control for the Western blot analysis of prokaryotic and eukaryotic samples.
Collapse
Affiliation(s)
- Yonghong Wu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing 100850, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu HR, Kuo HC, Huang HC, Kuo HC, Chen TY, Huang LT, Tain YL, Chen CC, Sheen JM, Lin IC, Ou CY, Hsu TY, Jheng YJ, Yang KD. Identification of immunodeficient molecules in neonatal mononuclear cells by proteomic differential displays. Proteomics 2011; 11:3491-500. [PMID: 21751377 DOI: 10.1002/pmic.201100123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/03/2011] [Accepted: 06/08/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|