1
|
Adampourezare M, Hasanzadeh M, Dehghan G, Hosseinpourefeizi MA, Seidi F. An innovative fluorometric bioanalysis strategy towards recognition of DNA methylation using opto-active polymer: A new platform for DNA damage studies by genosensor technology. J Mol Recognit 2022; 35:e2981. [PMID: 35767372 DOI: 10.1002/jmr.2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022]
Abstract
Efficient pharmacotherapy of cancer is related to accurate recognition of genetic mutations and epigenetic alterations in the early-stage diagnosis. In the present study, a novel optical genosensor based on toluidine blue as photonic probe was developed to detection of DNA methylation using hybridization of pDNA with cDNA. Biomedical analysis was performed using UV-vis and fluorometric methods. For the first time, this strategy was applied for the distinction of methylated DNA from unmethylated-DNA-based on the interaction of optical probe with methylated-DNA and unmethylated DNA. Fluorescence spectroscopic data showed that poly-toluidine blue could be bind to DNA sequences and lead to different fluorescence patterns and could be used as an efficient geno-platform for the sensitive bioassay of mutation. The excitation and emission wavelengths were 580 and 630 nm, respectively. Non-binding of mismatch sequences with the optical probe was used as negative control. Under optimal conditions, linear range was 1 zM to 0.2 pm and the lower limit of quantitation was obtained as target concentrations ranging 1 zM. The designed genosensor showed high capability to distinct methylation from un-methylated. Therefore, the designed DNA-based bioassay could detect DNA methylation significantly. Finally, bioanalysis of real samples showed that the designed genosensor could use to detect DNA methylation which is a new platform for point of care analysis.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Su D, Hou Y, Dong C, Ren J. Fluctuation correlation spectroscopy and its applications in homogeneous analysis. Anal Bioanal Chem 2019; 411:4523-4540. [DOI: 10.1007/s00216-019-01884-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
|
3
|
Asano M, Ohyashiki JH, Kobayashi-Kawana C, Umezu T, Imanishi S, Azuma K, Akahane D, Fujimoto H, Ito Y, Ohyashiki K. A novel non-invasive monitoring assay of 5-azacitidine efficacy using global DNA methylation of peripheral blood in myelodysplastic syndrome. Drug Des Devel Ther 2019; 13:1821-1833. [PMID: 31239639 PMCID: PMC6553951 DOI: 10.2147/dddt.s195071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Monitoring response and resistance to 5-azacitidine (AZA) is essential when treating patients with myelodysplastic syndrome (MDS). To quantify methylated DNA not only in the promoter region but also in the gene body, we established a single-molecule methylation assay (SMMA). Patients and methods: We first investigated the methylation extent (expressed as methylation index [MI]) by SMMA among 28 MDS and 6 post-MDS acute myeloid leukemia patients. We then analyzed the MI in 13 AZA-treated patients. Results: Whole-blood DNA from all 34 patients had low MI values compared with healthy volunteers (P<0.0001). DNA hypomethylation in MDS patients was more evident in neutrophils (P=0.0008) than in peripheral mononuclear cells (P=0.0713). No consistent pattern of genome-wide DNA hypomethylation was found among MDS subtypes or revised International Prognostic Scoring System (IPSS-R) categories; however, we found that the MI was significantly increased for patients at very high risk who were separated by the new cytogenetic scoring system for IPSS-R (P=0.0398). There was no significant difference in MI before AZA, regardless of the response to AZA (P=0.8689); however, sequential measurement of MI in peripheral blood demonstrated that AZA non-responders did not have normalized MI at the time of next course of AZA (P=0.0352). Conclusion: Our results suggest that sequential SMMA of peripheral blood after AZA may represent a non-invasive monitoring marker for AZA efficacy in MDS patients.
Collapse
Affiliation(s)
- Michiyo Asano
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Junko H Ohyashiki
- Department of Advanced Cellular Therapy, Tokyo Medical University, Tokyo, Japan
| | | | - Tomohiro Umezu
- Department of Hematology, Tokyo Medical University, Tokyo, Japan.,Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Imanishi
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kenko Azuma
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Hiroaki Fujimoto
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Yoshikazu Ito
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Ouyang L, Hu Y, Zhu L, Cheng GJ, Irudayaraj J. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens Bioelectron 2017; 92:755-762. [DOI: 10.1016/j.bios.2016.09.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
|
5
|
Taleat Z, Mathwig K, Sudhölter EJ, Rassaei L. Detection strategies for methylated and hypermethylated DNA. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Ohyashiki JH, Ohtsuki K, Mizoguchi I, Yoshimoto T, Katagiri S, Umezu T, Ohyashiki K. Downregulated microRNA-148b in circulating PBMCs in chronic myeloid leukemia patients with undetectable minimal residual disease: a possible biomarker to discontinue imatinib safely. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1151-9. [PMID: 25187697 PMCID: PMC4149385 DOI: 10.2147/dddt.s66812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND A subset of patients with chronic myeloid leukemia (CML) can sustain a complete molecular response after discontinuing imatinib mesylate (IM). We focused on microRNAs (miRNAs), with the aim of finding a molecular biomarker to discriminate which patients can safely and successfully discontinue IM use. METHODS To identify miRNAs that showed altered expression in patients who had discontinued IM (STOP-IM group), we first screened miRNA expression of peripheral blood mononuclear cells by using a TaqMan miRNA array on samples from five unselected patients from the STOP-IM group, seven CML patients receiving IM (IM group), and five healthy volunteers. We then performed miRNA quantification in 49 CML patients with deep molecular response. Mann-Whitney U and chi-square tests were used to determine statistical significance for comparisons between the control (healthy volunteers) and test groups (STOP-IM and IM groups). Multiple groups were compared by one-way analysis of variance. RESULTS Downregulation of miR-148b was noted in patients in the STOP-IM group and in a subset of the IM group. We then subdivided the IM patients into two groups: one with downregulated miR-148b expression (IM-1; less than the cut-off value) and the other without downregulated miR-148b expression (IM-2; greater than the cut-off value). The number of patients who had a sustained stable molecular response was significantly lower in IM-2 group. This group also had a significantly lower percentage of natural killer cells. CONCLUSION Downregulated miR-148 may contribute to immune surveillance in STOP-IM patients and may therefore have potential as additive information in managing CML patients undergoing treatment with IM.
Collapse
Affiliation(s)
- Junko H Ohyashiki
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kazushige Ohtsuki
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | | | - Tomohiro Umezu
- Department of Molecular Oncology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan ; Department of Molecular Science, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan ; Department of Molecular Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
7
|
Imanishi S, Umezu T, Ohtsuki K, Kobayashi C, Ohyashiki K, Ohyashiki JH. Constitutive activation of the ATM/BRCA1 pathway prevents DNA damage-induced apoptosis in 5-azacytidine-resistant cell lines. Biochem Pharmacol 2014; 89:361-9. [DOI: 10.1016/j.bcp.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/05/2023]
|
8
|
Wang M, Yan FY, Zou Y, Yang N, Chen L, Chen LG. A rhodamine derivative as selective fluorescent and colorimetric chemosensor for mercury (II) in buffer solution, test strips and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 123:216-223. [PMID: 24412780 DOI: 10.1016/j.saa.2013.12.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/08/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
In this paper, we reported a new rhodamine derivative bearing 2,4-dichloroquinazoline as a selective fluorescent chemosensor for Hg(2+). The ring-opening process of spirolactam enabled the large fluorescent enhancement and colorimetric change by Hg(2+) induced configuration transformation of the rhodamine. Moreover, the fluorescence changes of the chemosensor were dramatically specific for Hg(2+) in the presence of other metal ions, which could meet the selective requirements for practical application. Under optimized experimental conditions, the linear response range covered the concentration range of Hg(2+) from 0 to 1.0×10(-6)M, and the limit of detection was calculated to be 2.7×10(-8)M. In addition, the probe was also successfully applied to the determination of Hg(2+) in water samples, test strips and living cells.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Fan-Yong Yan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China.
| | - Yu Zou
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Ning Yang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Li Chen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Key Lab of Fiber Modification & Functional Fiber of Tianjin, Tianjin Polytechnic University, Tianjin 300387, PR China.
| | - Li-Gong Chen
- School of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
9
|
Mao X, Wei M, Zhu C, Lu J, Gao J, Simon AJ, Shi J, Huang Q, Fan C. Real time in vitro regulation of DNA methylation using a 5-fluorouracil conjugated DNA-based stimuli-responsive platform. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2604-2609. [PMID: 23480369 DOI: 10.1021/am3033052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA methylation, catalyzed by methylases, plays a critical role in many biological processes, and many methylases have been regarded as promising targets for antimicrobial drugs. In this work, we report a stimulus responsive, self-regulating anticancer drug release platform, comprising a multifunctional DNA that upon methylation by methyltransferase (MTase) releases 5-fluorouracil (5-Fu) and in turn inhibits subsequent expression of MTase. The multifunctional DNA with anticancer drug are first methylated by DNA adenine methylation (DAM) methyltransferase (MTase) and then cut by the methylation-sensitive restriction endonuclease Dpn I. Removal of duplex from the functional DNA by the methylation/cleavage process will release the anticancer drug, resulting in inhibition of the activity of DAM in turn. Consequently, the enzyme activity of DAM MTase can be self-regulated. Furthermore, we found that the inhibition efficiency of 5-Fu significantly increase as it is functionalized with DNA.
Collapse
Affiliation(s)
- Xiuhai Mao
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vuong T, Cheong BHP, Lye JKK, Liew OW, Ng TW. Microplate well coverage mixing using superhydrophobic contact. Anal Biochem 2012; 430:53-5. [DOI: 10.1016/j.ab.2012.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 11/16/2022]
|