1
|
Zhang L, Bai H, Zou J, Zhang C, Zhuang W, Hu J, Yao Y, Hu WW. Immuno-Rolling Circle Amplification (Immuno-RCA): Biosensing Strategies, Practical Applications, and Future Perspectives. Adv Healthc Mater 2024:e2402337. [PMID: 39252654 DOI: 10.1002/adhm.202402337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Indexed: 09/11/2024]
Abstract
In the rapidly evolving field of life sciences and biomedicine, detecting low-abundance biomolecules, and ultraweak biosignals presents significant challenges. This has spurred a rapid development of analytical techniques aiming for increased sensitivity and specificity. These advancements, including signal amplification strategies and the integration of biorecognition events, mark a transformative era in bioanalytical precision and accuracy. A prominent method among these innovations is immuno-rolling circle amplification (immuno-RCA) technology, which effectively combines immunoassays with signal amplification via RCA. This process starts when a targeted biomolecule, such as a protein or cell, binds to an immobilized antibody or probe on a substrate. The introduction of a circular DNA template triggers RCA, leading to exponential amplification and significantly enhanced signal intensity, thus the target molecule is detectable and quantifiable even at the single-molecule level. This review provides an overview of the biosensing strategy and extensive practical applications of immuno-RCA in detecting biomarkers. Furthermore, it scrutinizes the limitations inherent to these sensors and sets forth expectations for their future trajectory. This review serves as a valuable reference for advancing immuno-RCA in various domains, such as diagnostics, biomarker discovery, and molecular imaging.
Collapse
Affiliation(s)
- Limei Zhang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Bai
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Zou
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Hu
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenchuang Walter Hu
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
3
|
Shi H, Cui J, Sulemana H, Wang W, Gao L. Protein detection based on rolling circle amplification sensors. LUMINESCENCE 2021; 36:842-848. [PMID: 33502072 DOI: 10.1002/bio.4017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 12/22/2022]
Abstract
Rolling circle amplification (RCA) is an isothermal process under the action of DNA polymerases. Large-scale DNA templates have been generated using RCA for target detection. Some signal amplification strategies including optical sensors and electrochemical sensors based on RCA have been applied to achieve sensitive detection. Sensors based on RCA have attracted increasing interest. Advances in RCA-based sensors for protein detection are reviewed in this paper. The advantages and detection mechanisms of sensors based on RCA are revealed and discussed. Finally, possible challenges and future perspectives are also outlined.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, China
| | - Jingjie Cui
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | | - Wunian Wang
- P. E. Department of Jiangsu University, Zhenjiang, China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Yao Y, Chen X, Zhang X, Liu Q, Zhu J, Zhao W, Liu S, Sui G. Rapid Detection of Influenza Virus Subtypes Based on an Integrated Centrifugal Disc. ACS Sens 2020; 5:1354-1362. [PMID: 32248677 DOI: 10.1021/acssensors.9b02595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza is a zoonotic disease, infecting a wide variety of warm-blooded animals. It is caused by an influenza virus, which has been found with hundreds of subtypes. These subtypes are often associated with different sources of infection and possess complex courses of infection. In the early stage of influenza infection, rapid subtype detection is very practicable to prevent the disease from getting worse. Herein, we presented a high-throughput microfluidic centrifugal disc for rapid detection of influenza virus subtypes. The disc realized detection reagent preloads, automated reagent control, and RT-LAMP detections. Six kinds of highly pathogenic influenza viruses could be simultaneously identified, including influenza A subtypes H1, H3, H5, H7, and H9 and influenza B virus. Two different fluorescent dyes could be used on the disc for real-time detection or read by the naked eye. The performance of the disc was demonstrated by testing the clinical samples. The integrated centrifugal disc was expected for rapid detection of influenza virus subtypes to facilitate accurate drug usage in resource-constrained settings and contribute to reduce the risk of the influenza pandemic.
Collapse
Affiliation(s)
- Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Xi Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Jinhui Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| |
Collapse
|
5
|
Bialy RM, Ali MM, Li Y, Brennan JD. Protein-Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamer-Containing DNA Primer. Chemistry 2020; 26:5085-5092. [PMID: 32096262 DOI: 10.1002/chem.202000245] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Indexed: 12/22/2022]
Abstract
We report a method to detect proteins via suppression of rolling circle amplification (RCA) by using an appropriate aptamer as the linear primer (denoted as an aptaprimer) to initiate RCA. In the absence of a protein target, the aptaprimer is free to initiate RCA, which can produce long DNA products that are detected via binding of a fluorescent intercalating dye. Introduction of a target causes the primer region within the aptamer to become unavailable for binding to the circular template, inhibiting RCA. Using SYBR Gold or QuantiFluor dyes as fluorescent probes to bind to the RCA reaction product, it is possible to produce a generic protein-modulated RCA assay system that does not require fluorophore- or biotin-modified DNA species, substantially reducing complexity and cost of reagents. Based on this modulation of RCA, we demonstrate the ability to produce both solution and paper-based assays for rapid and quantitative detection of proteins including platelet derived growth factor and thrombin.
Collapse
Affiliation(s)
- Roger M Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Monsur M Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
6
|
Yao Y, Li Y, Liu Q, Zhou K, Zhao W, Liu S, Yang J, Jiang Y, Sui G. Rapid detection of hepatocellular carcinoma metastasis using reverse transcription loop-mediated isothermal amplification. Talanta 2020; 208:120402. [PMID: 31816739 DOI: 10.1016/j.talanta.2019.120402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
The main therapies of hepatocellular carcinoma (HCC) are hepatectomy and liver transplantation, but the recurrence rate of HCC after radical resection remains high. We established a novel method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid identification of four cancer stem cell-specific biomarkers to estimate the potential risk of HCC metastasis. After optimizing the final concentrations of Mg2+ and betaine, the sensitivity limits for detection of CK19 and EpCAM could reach 10 to 20 copies, while the sensitivity limits for the detection of CD133 and CD90 could reach 10 copies. We detected clinical specimens from 10 HCC patients and performed analysis before and after receiving hepatectomy using RT-LAMP and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results of both were consistent, but RT-LAMP was proved to be a more rapid, more sensitive, and more economic approach. This novel method is expected to estimate the recurrence and metastasis of HCC for clinical application by combining various low-cost circulating tumor cell sorting and detection tools.
Collapse
Affiliation(s)
- Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Yuancheng Li
- Institute of Biomedical Science, Fudan University, No. 138 Yixueyuan Road, Shanghai, 200032, PR China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Kaiqian Zhou
- The Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Jielin Yang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, 200131, PR China
| | - Yuan Jiang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, 200131, PR China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
7
|
Ahmad R, Jang H, Batule BS, Park HG. Barcode DNA-Mediated Signal Amplifying Strategy for Ultrasensitive Biomolecular Detection on Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) Mass Spectrometry. Anal Chem 2017; 89:8966-8973. [DOI: 10.1021/acs.analchem.7b01535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raheel Ahmad
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyowon Jang
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bhagwan S. Batule
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Production of dumbbell probe through hairpin cleavage-ligation and increasing RCA sensitivity and specificity by circle to circle amplification. Sci Rep 2016; 6:29229. [PMID: 27385060 PMCID: PMC4935871 DOI: 10.1038/srep29229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 11/23/2022] Open
Abstract
Dumbbell probe (DP) attracts increasing interests in rolling circle amplification (RCA). A universal DP production method through cleavage-ligation of hairpin was proposed and optimized. The production is characterized by restriction endonuclease (RE)-induced cleavage ends ligation. It has the advantage of phosphorylation-free, splint-free and purification-free. To optimize designing, we found that the position of RE cleavage sequence in the stem and the primer position in the loop affected the formation and amplification of DP obviously. Both sticky and blunt ends cleaved by RE produce DP efficiently. Moreover, we introduced this DP into circle to circle (C2C) RCA based on the same cleavage-ligation principle, and acquired high sensitivity. By combining a two-ligation design and the C2C strategy, specificity for detecting let-7 family members was increased extremely. Furthermore, coreaction of different steps facilitated convenient formation and amplification process of DP.
Collapse
|
9
|
Dezfouli M, Vickovic S, Iglesias MJ, Schwenk JM, Ahmadian A. Parallel barcoding of antibodies for DNA-assisted proteomics. Proteomics 2014; 14:2432-6. [DOI: 10.1002/pmic.201400215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/27/2014] [Accepted: 09/24/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Mahya Dezfouli
- Science for Life Laboratory; Division of Gene Technology; School of Biotechnology; Royal Institute of Technology (KTH); Solna Sweden
| | - Sanja Vickovic
- Science for Life Laboratory; Division of Gene Technology; School of Biotechnology; Royal Institute of Technology (KTH); Solna Sweden
| | - Maria Jesus Iglesias
- Science for Life Laboratory; Affinity Proteomics; Division of Proteomics and Nanobiotechnology; School of Biotechnology; Royal Institute of Technology (KTH); Solna Sweden
| | - Jochen M. Schwenk
- Science for Life Laboratory; Affinity Proteomics; Division of Proteomics and Nanobiotechnology; School of Biotechnology; Royal Institute of Technology (KTH); Solna Sweden
| | - Afshin Ahmadian
- Science for Life Laboratory; Division of Gene Technology; School of Biotechnology; Royal Institute of Technology (KTH); Solna Sweden
| |
Collapse
|
10
|
Jha RK, Gaiotto T, Bradbury ARM, Strauss CEM. An improved Protein G with higher affinity for human/rabbit IgG Fc domains exploiting a computationally designed polar network. Protein Eng Des Sel 2014; 27:127-34. [PMID: 24632761 DOI: 10.1093/protein/gzu005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein G is an IgG binding protein that has been widely exploited for biotechnological purposes. Rosetta protein modeling identified a set of favorable polar mutations in Protein G, at its binding interface with the Fc domain of Immunoglobulin G, that were predicted to increase the stability and tighten the binding relative to native Protein G, with only a minor perturbation of the binding mode seen in the crystal structure. This triple mutant was synthesized and evaluated experimentally. Relative to the native protein G, the mutant showed a 3.5-fold enhancement in display level on the surface of yeast and a 5-fold tighter molar affinity for rabbit and human IgG. We attribute the improved affinity to a network of hydrogen bonds exploiting specific polar groups on human and rabbit Fc. The relative specificity increased as well since there was little affinity enhancement for goat and mouse Fc, while the affinity for rat Fc was poorer by half. This designed Protein G will be useful in biotechnological applications as a recombinant protein, where its improved affinity, display and specificity will increase antibody capture sensitivity and capacity. Furthermore, the display of this protein on the surface of yeast introduces the concept of the use of yeast as an affinity matrix.
Collapse
Affiliation(s)
- Ramesh K Jha
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
11
|
Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 2014; 43:3324-41. [DOI: 10.1039/c3cs60439j] [Citation(s) in RCA: 650] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
KOBORI T, TAKAHASHI H. Expanding Possibilities of Rolling Circle Amplification as a Biosensing Platform. ANAL SCI 2014; 30:59-64. [DOI: 10.2116/analsci.30.59] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshiro KOBORI
- National Food Research Institute, National Agriculture and Food Research Organization
| | - Hirokazu TAKAHASHI
- National Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
13
|
Janssen KPF, Knez K, Spasic D, Lammertyn J. Nucleic acids for ultra-sensitive protein detection. SENSORS (BASEL, SWITZERLAND) 2013; 13:1353-84. [PMID: 23337338 PMCID: PMC3574740 DOI: 10.3390/s130101353] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022]
Abstract
Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of "personalized medicine". Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given.
Collapse
Affiliation(s)
- Kris P. F. Janssen
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Karel Knez
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Dragana Spasic
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| | - Jeroen Lammertyn
- MeBioS Biosensor Group, Faculteit Bio-Ingenieurswetenschappen, KU Leuven, Willem De Croylaan, Leuven, Belgium; E-Mails: (K.P.F.J.); (K.K.); (D.S.)
| |
Collapse
|
14
|
Chu YW, Wang BY, Lin HS, Lin TY, Hung YJ, Engebretson DA, Lee W, Carey JR. Layer by layer assembly of biotinylated protein networks for signal amplification. Chem Commun (Camb) 2013; 49:2397-9. [DOI: 10.1039/c2cc38233d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Akter F, Mie M, Grimm S, Nygren PÅ, Kobatake E. Detection of antigens using a protein-DNA chimera developed by enzymatic covalent bonding with phiX gene A*. Anal Chem 2012; 84:5040-6. [PMID: 22571843 DOI: 10.1021/ac300708r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chemical reactions used to make antibody-DNA conjugates in many immunoassays diminish antigen-binding activity and yield heterogeneous products. Here, we address these issues by developing an antibody-based rolling circle amplification (RCA) strategy using a fusion of φX174 gene A* protein and Z(mab25) (A*-Zmab). The φX174 gene A* protein is an enzyme that can covalently link with DNA, while the Z(mab25) protein moiety can bind to specific species of antibodies. The DNA in an A*-Zmab conjugate was attached to the A* protein at a site chosen to not interfere with protein function, as determined by enzyme-linked immunosorbent assay (ELISA) and gel mobility shift analysis. The novel A*-Zmab-DNA conjugate retained its binding capabilities to a specific class of murine immunoglobulin γ1 (IgG1) but not to rabbit IgG. This indicates the generality of the A*-Zmab-based immuno-RCA assay that can be used in-sandwich ELISA format. Moreover, the enzymatic covalent method dramatically increased the yields of A*-Zmab-DNA conjugates up to 80% after a 15 min reaction. Finally, sensitive detection of human interferon-γ (IFN-γ) was achieved by immuno-RCA using our fusion protein in sandwich ELISA format. This new approach of the use of site-specific enzymatic DNA conjugation to proteins should be applicable to fabrication of novel immunoassays for biosensing.
Collapse
Affiliation(s)
- Farhima Akter
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Doug Auld
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | | |
Collapse
|