1
|
Li H, Lin Z, Guo X, Pan Z, Pan H, Wang D. Primer extension refractory PCR: an efficient and reliable genome walking method. Mol Genet Genomics 2024; 299:27. [PMID: 38466442 DOI: 10.1007/s00438-024-02126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Genome walking, a molecular technique for obtaining unknown flanking genomic sequences from a known genomic sequence, has been broadly applied to determine transgenic sites, mine new genetic resources, and fill in chromosomal gaps. This technique has advanced genomics, genetics, and related disciplines. Here, an efficient and reliable genome walking technique, called primer extension refractory PCR (PER-PCR), is presented. PER-PCR uses a set of primary, secondary, and tertiary walking primers. The middle 15 nt of the primary walking primer overlaps with the 3' parts of the secondary and tertiary primers. The 5' parts of the three primers are heterologous to each other. The short overlap allows the walking primer to anneal to its predecessor only in a relaxed-stringency PCR cycle, resulting in a series of single-stranded DNAs; however, the heterologous 5' part prevents the creation of a perfect binding site for the walking primer. In the next stringent cycle, the target single strand can be extended into a double-stranded DNA molecule by the sequence-specific primer and thus can be exponentially amplified by the remaining stringent cycles. The nontarget single strand fails to be enriched due to the lack of a perfect binding site for any primer. PER-PCR was validated by extension into unknown flanking regions of the hyg gene in rice and the gadR gene in Levilactobacillus brevis CD0817. In summary, in this study, a new practical PER-PCR method was constructed as a potential alternative to existing genome walking methods.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Boya Bio-Pharmaceutical Group Co., Ltd, High-Tech Industrial Development Zone, Fuzhou, 344100, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Dongying Wang
- Physical Education Department, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
2
|
Wei C, Lin Z, Pei J, Pan H, Li H. Semi-Site-Specific Primer PCR: A Simple but Reliable Genome-Walking Tool. Curr Issues Mol Biol 2023; 45:512-523. [PMID: 36661520 PMCID: PMC9857434 DOI: 10.3390/cimb45010034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Genome-walking has been frequently applied to molecular biology and related areas. Herein, a simple but reliable genome-walking technique, termed semi-site-specific primer PCR (3SP-PCR), is presented. The key to 3SP-PCR is the use of a semi-site-specific primer in secondary PCR that partially overlaps its corresponding primary site-specific primer. A 3SP-PCR set comprises two rounds of nested amplification reactions. In each round of reaction, any primer is allowed to partially anneal to the DNA template once only in the single relaxed-stringency cycle, creating a pool of single-stranded DNAs. The target single-stranded DNA can be converted into a double-stranded molecule directed by the site-specific primer, and thus can be exponentially amplified by the subsequent high-stringency cycles. The non-target one cannot be converted into a double-strand due to the lack of a perfect binding site to any primer, and thus fails to be amplified. We validated the 3SP-PCR method by using it to probe the unknown DNA regions of rice hygromycin genes and Levilactobacillus brevis CD0817 glutamic acid decarboxylase genes.
Collapse
Affiliation(s)
- Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
3
|
Pei J, Sun T, Wang L, Pan Z, Guo X, Li H. Fusion primer driven racket PCR: A novel tool for genome walking. Front Genet 2022; 13:969840. [PMID: 36330444 PMCID: PMC9623105 DOI: 10.3389/fgene.2022.969840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The limitations of the current genome-walking strategies include strong background and cumbersome experimental processes. Herein, we report a genome-walking method, fusion primer-driven racket PCR (FPR-PCR), for the reliable retrieval of unknown flanking DNA sequences. Four sequence-specific primers (SSP1, SSP2, SSP3, and SSP4) were sequentially selected from known DNA (5'→3′) to perform FPR-PCR. SSP3 is the fragment that mediates intra-strand annealing (FISA). The FISA fragment is attached to the 5′ end of SSP1, generating a fusion primer. FPR-PCR comprises two rounds of amplification reactions. The single-fusion primary FPR-PCR begins with the selective synthesis of the target first strand, then allows the primer to partially anneal to some place(s) on the unknown region of this strand, producing the target second strand. Afterward, a new first strand is synthesized using the second strand as the template. The 3′ end of this new first strand undergoes intra-strand annealing to the FISA site, followed by the formation of a racket-like DNA by a loop-back extension. This racket-like DNA is exponentially amplified in the secondary FPR-PCR performed using SSP2 and SSP4. We validated this FPR-PCR method by identifying the unknown flanks of Lactobacillus brevis CD0817 glutamic acid decarboxylase genes and the rice hygromycin gene.
Collapse
Affiliation(s)
- Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
4
|
Edwards B, Hornstein ED, Wilson NJ, Sederoff H. High-throughput detection of T-DNA insertion sites for multiple transgenes in complex genomes. BMC Genomics 2022; 23:685. [PMID: 36195834 PMCID: PMC9533571 DOI: 10.1186/s12864-022-08918-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic engineering of crop plants has been successful in transferring traits into elite lines beyond what can be achieved with breeding techniques. Introduction of transgenes originating from other species has conferred resistance to biotic and abiotic stresses, increased efficiency, and modified developmental programs. The next challenge is now to combine multiple transgenes into elite varieties via gene stacking to combine traits. Generating stable homozygous lines with multiple transgenes requires selection of segregating generations which is time consuming and labor intensive, especially if the crop is polyploid. Insertion site effects and transgene copy number are important metrics for commercialization and trait efficiency. RESULTS We have developed a simple method to identify the sites of transgene insertions using T-DNA-specific primers and high-throughput sequencing that enables identification of multiple insertion sites in the T1 generation of any crop transformed via Agrobacterium. We present an example using the allohexaploid oil-seed plant Camelina sativa to determine insertion site location of two transgenes. CONCLUSION This new methodology enables the early selection of desirable transgene location and copy number to generate homozygous lines within two generations.
Collapse
Affiliation(s)
- Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan J Wilson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Wang L, Jia M, Li Z, Liu X, Sun T, Pei J, Wei C, Lin Z, Li H. Wristwatch PCR: A Versatile and Efficient Genome Walking Strategy. Front Bioeng Biotechnol 2022; 10:792848. [PMID: 35497369 PMCID: PMC9039356 DOI: 10.3389/fbioe.2022.792848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Genome walking is a method used to retrieve unknown flanking DNA. Here, we reported wristwatch (WW) PCR, an efficient genome walking technique mediated by WW primers (WWPs). WWPs feature 5′- and 3′-overlap and a heterologous interval. Therefore, a wristwatch-like structure can be formed between WWPs under relatively low temperatures. Each WW-PCR set is composed of three nested (primary, secondary, and tertiary) PCRs individually performed by three WWPs. The WWP is arbitrarily annealed somewhere on the genome in the one low-stringency cycle of the primary PCR, or directionally to the previous WWP site in one reduced-stringency cycle of the secondary/tertiary PCR, producing a pool of single-stranded DNAs (ssDNAs). A target ssDNA incorporates a gene-specific primer (GSP) complementary at the 3′-end and the WWP at the 5′-end and thus can be exponentially amplified in the next high-stringency cycles. Nevertheless, a non-target ssDNA cannot be amplified as it lacks a perfect binding site for any primers. The practicability of the WW-PCR was validated by successfully accessing unknown regions flanking Lactobacillus brevis CD0817 glutamate decarboxylase gene and the hygromycin gene of rice. The WW-PCR is an attractive alternative to the existing genome walking techniques.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhaoqin Li
- Charles W. Davidson College of Engineering, San Jose State University, San Jose, CA, United States
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Tianyi Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- *Correspondence: Haixing Li,
| |
Collapse
|
6
|
Gu H, Zhang P, Xu M, Liang D. Amplicon genome fishing (AGF): a rapid and efficient method for sequencing target cis-regulatory regions in nonmodel organisms. Mol Genet Genomics 2021; 296:527-539. [PMID: 33797587 DOI: 10.1007/s00438-021-01775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Cis-regulatory sequences play a crucial role in regulating gene expression and are evolutionary hot spots that drive phenotypic divergence among organisms. Sequencing some cis-regulatory regions of interest in many different species is common in comparative genetic studies. For nonmodel organisms lacking genomic data, genome walking is often the preferred method for this type of application. However, applying genome walking will be laborious and time-consuming when the number of cis-regulatory regions and species to be analyzed is large. In this study, we propose a novel method called amplicon genome fishing (AGF), which can isolate and sequence cis-regulatory regions of interest for any organism. The main idea of the AGF method is to use fragments amplified from the target cis-regulatory regions as enrichment baits to capture and sequence the whole target cis-regulatory regions from genomic library pools. Unlike genome walking, the AGF method is based on hybridization capture and high-throughput sequencing, which makes this method rapid and efficient for projects where some cis-regulatory regions have to be sequenced for many species. We used human amplicons as capture baits and successfully sequenced five target enhancer regions of Homo sapiens, Mus musculus, Gallus gallus, and Xenopus tropicalis, proving the feasibility and repeatability of AGF. To show the utility of the AGF method in real studies, we used it to sequence the ZRS enhancer, a cis-regulatory region associated with the limb loss of snakes, for twenty-three vertebrate species (includes many limbless species never sequenced before). The newly obtained ZRS sequences provide new perspectives into the relationship between the ZRS enhancer's evolution and limb loss in major tetrapod lineages.
Collapse
Affiliation(s)
- HanMei Gu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - ManHao Xu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Duan L, Zhang S, Yang Y, Wang Q, Lan Q, Wang Y, Xu W, Jin W, Li L, Chen R. A feasible method for detecting unknown GMOs via a combined strategy of PCR-based suppression subtractive hybridization and next-generation sequencing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Chang K, Wang Q, Shi X, Wang S, Wu H, Nie L, Li H. Stepwise partially overlapping primer-based PCR for genome walking. AMB Express 2018; 8:77. [PMID: 29744607 PMCID: PMC5943200 DOI: 10.1186/s13568-018-0610-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/04/2018] [Indexed: 11/10/2022] Open
Abstract
A stepwise partially overlapping primer-based PCR (SWPOP-PCR) method for isolating flanking unknown DNA regions was developed, which comprises three rounds of nested PCRs sequentially driven by SWPOP primer-nested specific primer pairs. SWPOP primer set is characterized by a partial overlap of 10 bp with 3′-part of the latter primer is identical to 5′-part of the former one, which makes the SWPOP primer in use anneal to SWPOP site of the prior PCR product only at relatively low temperature. For each PCR, target single-stranded DNA primed by the SWPOP primer in the exclusive one low-stringency cycle is converted into double-stranded form in the following high-stringency cycle due to the presence of a perfect annealing site for the specific primer. This double-stranded DNA bounded by the specific primer and the SWPOP primer is exponentially amplified in the remaining high-stringency cycles. Non-target single-stranded DNA, however, cannot be amplified given the lack of perfect complementary sequences for any primers. Therefore, the partial overlap of a SWPOP primer set preferentially synthesizes target products but inhibits nonspecific amplification. We successfully exploited SWPOP-PCR to obtain the DNA sequences flanking glutamate decarboxylase gene (gadA) locus in Lactobacillus brevis NCL912 and hygromycin gene (hyg) integrated in rice.
Collapse
|
9
|
Košir AB, Arulandhu AJ, Voorhuijzen MM, Xiao H, Hagelaar R, Staats M, Costessi A, Žel J, Kok EJ, Dijk JPV. ALF: a strategy for identification of unauthorized GMOs in complex mixtures by a GW-NGS method and dedicated bioinformatics analysis. Sci Rep 2017; 7:14155. [PMID: 29074984 PMCID: PMC5658351 DOI: 10.1038/s41598-017-14469-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/09/2017] [Indexed: 12/27/2022] Open
Abstract
The majority of feed products in industrialised countries contains materials derived from genetically modified organisms (GMOs). In parallel, the number of reports of unauthorised GMOs (UGMOs) is gradually increasing. There is a lack of specific detection methods for UGMOs, due to the absence of detailed sequence information and reference materials. In this research, an adapted genome walking approach was developed, called ALF: Amplification of Linearly-enriched Fragments. Coupling of ALF to NGS aims for simultaneous detection and identification of all GMOs, including UGMOs, in one sample, in a single analysis. The ALF approach was assessed on a mixture made of DNA extracts from four reference materials, in an uneven distribution, mimicking a real life situation. The complete insert and genomic flanking regions were known for three of the included GMO events, while for MON15985 only partial sequence information was available. Combined with a known organisation of elements, this GMO served as a model for a UGMO. We successfully identified sequences matching with this organisation of elements serving as proof of principle for ALF as new UGMO detection strategy. Additionally, this study provides a first outline of an automated, web-based analysis pipeline for identification of UGMOs containing known GM elements.
Collapse
Affiliation(s)
- Alexandra Bogožalec Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Alfred J Arulandhu
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | | | - Hongmei Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, P. R. China
| | - Rico Hagelaar
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Martijn Staats
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | | | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Esther J Kok
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Jeroen P van Dijk
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Drozd SF, Surkov SA, Glazkov MV. Some characteristics of transgenic clones of mouse R1 line embryonic stem cells. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sundaresha S, Rohini S, Appanna VK, Arthikala MK, Shanmugam NB, Shashibhushan NB, Kishore CMH, Pannerselvam R, Kirti PB, Udayakumar M. Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. PLANT CELL REPORTS 2016; 35:1189-203. [PMID: 26956134 DOI: 10.1007/s00299-016-1945-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/01/2016] [Indexed: 05/11/2023]
Abstract
Coexpression of two antifungal genes ( NPR1 and defensin ) in transgenic peanut results in the development of resistance to two major fungal pathogens, Aspergillus flavus and Cercospora arachidicola. Fungal diseases have been one of the principal causes of crop losses with no exception to peanut (Arachis hypogeae L.), a major oilseed crop in Asia and Africa. To address this problem, breeding for fungal disease resistance has been successful to some extent against specific pathogens. However, combating more than one fungal pathogen via breeding is a major limitation in peanut. In the present study, we demonstrated the potential use of co-overexpression of two genes, NPR1 and defensin isolated from Brassica juncea and Trigonella foenum-graecum respectively; that offered resistance towards Aspergillus flavus in peanut. The transgenic plants not only resisted the mycelial growth but also did not accumulate aflatoxin in the seeds. Resistance was also demonstrated against another pathogen, Cercospora arachidicola at varied levels; the transgenic plants showed both reduction in the number of spots and delay in the onset of disease. PCR, Southern and Western blot analysis confirmed stable integration and expression of the transgenes in the transgenic plants. The combinatorial use of the two pathogen resistance genes presents a novel approach to mitigate two important fungal pathogens of peanut.
Collapse
Affiliation(s)
- S Sundaresha
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
- Department of Pathology, University of Agricultural Sciences, GKVK, Bengaluru, India
- ICAR-Central Potato Research Institute, Shimla, HP, India
| | - Sreevathsa Rohini
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
- ICAR-National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, India
| | - V K Appanna
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Manoj-Kumar Arthikala
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, 37684, Guanajuato, Mexico
| | - N B Shanmugam
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
| | - N B Shashibhushan
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
| | - C M Hari Kishore
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India
| | - R Pannerselvam
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - M Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, India.
| |
Collapse
|
12
|
Arulandhu AJ, van Dijk JP, Dobnik D, Holst-Jensen A, Shi J, Zel J, Kok EJ. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs). Anal Bioanal Chem 2016; 408:4575-93. [PMID: 27086015 DOI: 10.1007/s00216-016-9513-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 01/04/2023]
Abstract
With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.
Collapse
Affiliation(s)
- Alfred J Arulandhu
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Jeroen P van Dijk
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - David Dobnik
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Arne Holst-Jensen
- Norwegian Veterinary Institute, Ullevaalsveien 68, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Center for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Life Sciences Building, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jana Zel
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Esther J Kok
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Xu W, Shang Y, Zhu P, Zhai Z, He J, Huang K, Luo Y. Randomly broken fragment PCR with 5' end-directed adaptor for genome walking. Sci Rep 2013; 3:3465. [PMID: 24322619 PMCID: PMC3857568 DOI: 10.1038/srep03465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/25/2013] [Indexed: 11/09/2022] Open
Abstract
Many genome walking methods based on polymerase chain reaction (PCR) are available, including those with and without restriction enzyme modification. Nevertheless, these methods suffer from low reproducibility, inefficiency, and non-specificity. Here, we present a traceable and efficient PCR strategy: randomly broken fragment PCR with 5' end-directed adaptor for genome walking. The genome is first fragmented randomly. After blunting ends, the fragments are ligated to the 5' end-directed adaptors. Semi-nested PCR is then performed. Thus, we can obtain an unknown sequence by cloning the fragments of interest, followed by sequencing. This method effectively bypasses the above-mentioned obstacles and offers the advances: 1) genome fragmentation without using restriction enzymes; 2) enhancement of primer specificity and the prevention of self-ligation between the adaptors by employing a 5' end-directed adaptor. All of the steps in this new method are straightforward, and the unknown sequence can be definitively obtained by merely applying the method once.
Collapse
Affiliation(s)
- Wentao Xu
- 1] Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China [2] The Supervision, Inspection & Testing Center of Genetically Modified Food Safety, Ministry of Agriculture, Beijing 100083, China [3]
| | | | | | | | | | | | | |
Collapse
|
14
|
How to deal with the upcoming challenges in GMO detection in food and feed. J Biomed Biotechnol 2012; 2012:402418. [PMID: 23193359 PMCID: PMC3485584 DOI: 10.1155/2012/402418] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022] Open
Abstract
Biotech crops are the fastest adopted crop technology in the history of modern agriculture. The commercialisation of GMO is in many countries strictly regulated laying down the need for traceability and labelling. To comply with these legislations, detection methods are needed. To date, GM events have been developed by the introduction of a transgenic insert (i.e., promoter, coding sequence, terminator) into the plant genome and real-time PCR is the detection method of choice. However, new types of genetic elements will be used to construct new GMO and new crops will be transformed. Additionally, the presence of unauthorised GMO in food and feed samples might increase in the near future. To enable enforcement laboratories to continue detecting all GM events and to obtain an idea of the possible presence of unauthorised GMO in a food and feed sample, an intensive screening will become necessary. A pragmatic, cost-effective, and time-saving approach is presented here together with an overview of the evolution of the GMO and the upcoming needs.
Collapse
|