1
|
Lei C, Liu D, Zhou Q, Ma S, Qian H. Engineering of dopamine conjugated with bovine serum albumin and zeolite imidazole framework: A promising drug delivery nanocarrier on lung cancer cells. Heliyon 2024; 10:e36580. [PMID: 39281594 PMCID: PMC11401118 DOI: 10.1016/j.heliyon.2024.e36580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Modern, highly abundant materials called metal-organic structures (MOF) comprise metal ions and organic coordinating molecules and have attracted attention as potential biomedical materials due to their unusual properties. In the present study, the anticancer drug sorafenib (SF) and the Kaempferol (KM) were encapsulated in a nanocomposite made of bovine serum albumin (BA) as the core and pH-dependent zeolitic imidazolate framework-8 (ZIF) coating. To develop a multifunctional nanocarrier, polydopamine, Au3+ chelation, and gallic acid (GL) conjugation were used to build BA@SF@ZIF and BA@SF@ZIF/KM. A variety of characterisation techniques verified the success of the nanocarrier's fabrication. Studies in vitro exhibited that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL released their respective ligands in a pH-dependent manner due to ZIF-8. These nanocarriers' cytotoxicity and apoptotic effects were measured with the MTT evaluation. Morphological and nuclear damage staining in A549 and H1299 human lung cancer cells. The cytotoxicity investigation displayed that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL were more efficient than free sorafenib in A549 and H1299 cells with less toxicity in HUVECs. The DNA fragmentation of the cells was assessed by utilizing the comet assay. BA@SF@ZIF/KM/DA/GL increased ROS levels and caused mitochondrial membrane potential and DNA damage, which resulted in apoptosis. Therefore, we believe the developed smart BA@SF@ZIF/KM/DA/GL could be a promising therapeutic approach using sorafenib for lung cancer therapy.
Collapse
Affiliation(s)
- Chenggang Lei
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Di Liu
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Qian Zhou
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Shengwei Ma
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Haiyun Qian
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| |
Collapse
|
2
|
Zeng Y, Hoshino Y, Susami K, Honda S, Minami N, Ikeda S. Evaluating histone modification analysis of individual preimplantation embryos. BMC Genomics 2024; 25:75. [PMID: 38238676 PMCID: PMC10795292 DOI: 10.1186/s12864-024-09984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND We previously reported a modification of the CUT&Tag method (NTU-CAT) that allows genome-wide histone modification analysis in individual preimplantation embryos. In the present study, NTU-CAT was further simplified by taking advantage of the Well-of-the-Well (WOW) system, which enables the processing of multiple embryos in a shorter time with less reagent and cell loss during the procedure (WOW-CUT&Tag, WOW-CAT). RESULTS WOW-CAT allowed histone modification profiling from not only a single blastocyst but also from a portion of it. WOW-CAT generated similar H3K4me3 profiles as NTU-CAT, but they were closer to the profiles produced by chromatin immunoprecipitation-sequencing, such as a valley-like trend and relatively lower false positive rates, indicating that WOW-CAT may attenuate the bias of Tn5 transposase to cut open chromatin regions. Simultaneous WOW-CAT of two halves of single blastocysts was conducted to analyze two different histone modifications (H3K4me3 and H3K27ac) within the same embryo. Furthermore, trophectoderm cells were biopsied and subjected to WOW-CAT in anticipation of preimplantation diagnosis of histone modifications. WOW-CAT allowed the monitoring of epigenetic modifications in the main body of the embryo. For example, analysis of H3K4me3 modifications of XIST and DDX3Y in trophectoderm biopsies could be used to sex embryos in combination with quantitative PCR, but without the need for deep sequencing. CONCLUSIONS These results suggest the applicability of WOW-CAT for flexible epigenetic analysis of individual embryos in preimplantation epigenetic diagnosis.
Collapse
Affiliation(s)
- Yiren Zeng
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoichiro Hoshino
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuki Susami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Belda-Perez R, Heras S, Cimini C, Romero-Aguirregomezcorta J, Valbonetti L, Colosimo A, Colosimo BM, Santoni S, Barboni B, Bernabò N, Coy P. Advancing bovine in vitro fertilization through 3D printing: the effect of the 3D printed materials. Front Bioeng Biotechnol 2023; 11:1260886. [PMID: 37929185 PMCID: PMC10621798 DOI: 10.3389/fbioe.2023.1260886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays there is an increasing demand for assisted reproductive technologies due to the growth of infertility problems. Naturally, fertilization occurs in the oviduct, where the oviductal epithelial cells (OECs) secrete many molecules that affect the embryo's metabolism and protect it from oxidative stress. When the OECs are grown in 3D culture systems, they maintain a great part of their functional characteristics, making them an excellent model for in vitro fertilization (IVF) studies. In this work, we aimed to evaluate the suitability of different 3D-printing processes in conjunction with the corresponding set of commercially available biomaterials: extrusion-based processing using polylactic acid (PLA) and polycaprolactone (PCL) and stereolithography or digital-light processing using polyethylene-glycol-diacrylate (PEGDA) with different stiffness (PEGDA500, PEGDA200, PEGDA PhotoInk). All the 3D-printed scaffolds were used to support IVF process in a bovine embryo assay. Following fertilization, embryo development and quality were assessed in terms of cleavage, blastocyst rate at days 7 and 8, total cell number (TCN), inner cell mass/trophectoderm ratio (ICN/TE), and apoptotic cell ratio (ACR). We found a detrimental effect on cleavage and blastocyst rates when the IVF was performed on any medium conditioned by most of the materials available for digital-light processing (PEGDA200, PEGDA500). The observed negative effect could be possibly due to some leaked compound used to print and stabilize the scaffolds, which was not so evident however with PEGDA PhotoInk. On the other hand, all the extrusion-based processable materials did not cause any detrimental effect on cleavage or blastocyst rates. The principal component analysis reveals that embryos produced in presence of 3D-printed scaffolds produced via extrusion exhibit the highest similarity with the control embryos considering cleavage, blastocyst rates, TCN, ICN/TE and ACR per embryo. Conversely, all the photo-cross linkable materials or medium conditioned by PLA, lead to the highest dissimilarities. Since the use of PCL scaffolds, as well as its conditioned medium, bring to embryos that are more similar to the control group. Our results suggest that extrusion-based 3D printing of PCL could be the best option to be used for new IVF devices, possibly including the support of OECs, to enhance bovine embryo development.
Collapse
Affiliation(s)
- Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Sonia Heras
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Jon Romero-Aguirregomezcorta
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Alessia Colosimo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Silvia Santoni
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Pilar Coy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Fernández-Montoro A, Angel-Velez D, Benedetti C, Azari-Dolatabad N, Pascottini OB, Van Soom A, Pavani KC. Alternative Culture Systems for Bovine Oocyte In Vitro Maturation: Liquid Marbles and Differentially Shaped 96-Well Plates. Animals (Basel) 2023; 13:ani13101635. [PMID: 37238065 DOI: 10.3390/ani13101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In vivo-matured oocytes exhibit higher developmental competence than those matured in vitro but mimicking the in vivo environment by in vitro conditions has been challenging. Until now, conventional two-dimensional (2D) systems have been used for in vitro maturation of bovine cumulus-oocytes-complexes (COCs). However, using such systems present certain limitations. Therefore, alternative low-cost methodologies may help to optimize oocyte in vitro maturation. Here, we used two different systems to culture COCs and evaluate their potential influence on embryo development and quality. In the first system, we used treated fumed silica particles to create a 3D microenvironment (liquid marbles; LM) to mature COCs. In the second system, we cultured COCs in 96-well plates with different dimensions (flat, ultra-low attachment round-bottom, and v-shaped 96-well plates). In both systems, the nuclear maturation rate remained similar to the control in 2D, showing that most oocytes reached metaphase II. However, the subsequent blastocyst rate remained lower in the liquid marble system compared with the 96-well plates and control 2D systems. Interestingly, a lower total cell number was found in the resulting embryos from both systems (LM and 96-well plates) compared with the control. In conclusion, oocytes matured in liquid marbles or 96-well plates showed no remarkable change in terms of meiotic resumption. None of the surface geometries influenced embryo development while oocyte maturation in liquid marbles led to reduced embryo development. These findings show that different geometry during maturation did not have a large impact on oocyte and embryo development. Lower embryo production after in vitro maturation in liquid marbles was probably detected because in vitro maturation was performed in serum-free medium, which makes oocytes more sensitive to possible toxic effects from the environment.
Collapse
Affiliation(s)
- Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Daniel Angel-Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
- Research Group in Animal Sciences-INCA-CES, Universidad CES, Medellin 050021, Colombia
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Nima Azari-Dolatabad
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
5
|
El-Sheikh M, Mesalam A, Joo MD, Sidrat T, Mesalam AA, Kong IK. Attenuation of Oxidative Stress and Regulation of AKT Signaling by Vanillic Acid during Bovine Pre-Implantation Embryo Development. Nutrients 2023; 15:nu15102257. [PMID: 37242140 DOI: 10.3390/nu15102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Vanillic acid (VA) has shown antioxidant and anti-inflammatory activities in different cell types, but its biological effects in the context of early embryo development have not yet been clarified. In the current study, the impact of VA supplementation during in vitro maturation (IVM) and/or post-fertilization (in vitro culture; IVC) on redox homeostasis, mitochondrial function, AKT signaling, developmental competence, and the quality of bovine pre-implantation embryos was investigated. The results showed that dual exposure to VA during IVM and late embryo culture (IVC3) significantly improved the blastocyst development rate, reduced oxidative stress, and promoted fatty acid oxidation as well as mitochondrial activity. Additionally, the total numbers of cells and trophectoderm cells per blastocyst were higher in the VA-treated group compared to control (p < 0.05). The RT-qPCR results showed down-regulation of the mRNA of the apoptosis-specific markers and up-regulation of AKT2 and the redox homeostasis-related gene TXN in the treated group. Additionally, the immunofluorescence analysis showed high levels of pAKT-Ser473 and the fatty acid metabolism marker CPT1A in embryos developed following VA treatment. In conclusion, the study reports, for the first time, the embryotrophic effects of VA, and the potential linkage to AKT signaling pathway that could be used as an efficacious protocol in assisted reproductive technologies (ART) to improve human fertility.
Collapse
Affiliation(s)
- Marwa El-Sheikh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ahmed Atef Mesalam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Azari-Dolatabad N, Benedetti C, Velez DA, Montoro AF, Sadeghi H, Residiwati G, Leroy JLMR, Van Soom A, Pascottini OB. Oocyte developmental capacity is influenced by intrinsic ovarian factors in a bovine model for individual embryo production. Anim Reprod Sci 2023; 249:107185. [PMID: 36610102 DOI: 10.1016/j.anireprosci.2022.107185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The ovary and its hormones may have major effects on the in vitro developmental capacity of the oocytes it contains. We related intrinsic ovarian factors namely the presence of corpus luteum (CL) and/or dominant follicle (>8 mm) and the follicular count to cumulus expansion (CE), embryo development, and blastocyst quality in a bovine model. Cumulus-oocyte-complexes (COCs) were aspirated from follicles between 4 and 8 mm in diameter. In vitro embryo production was performed in a fully individual production system. The follicular fluid from which COCs were collected was pooled (per ovary) to evaluate the estrogen, progesterone, and insulin-like growth factor-1 (IGF-1) concentrations. Cumulus oocyte complexes collected from ovaries without a CL presented a greater CE than COCs derived from ovaries bearing CL. The absence of ovarian structures increased the blastocyst rate when compared to oocytes derived from ovaries with a CL, a dominant follicle, or both. Blastocysts derived from ovaries without a dominant follicle presented higher total cell numbers and a lower proportion of apoptosis than blastocysts derived from ovaries containing a dominant follicle. Cumulus oocyte complexes collected from ovaries with high follicular count resulted in higher cleavage than from ovaries with low follicular count, but the blastocyst rate was similar between groups. Ovaries bearing a CL had greater progesterone and IGF-1 follicular fluid concentrations in neighboring follicles than ovaries without a CL. Selection for bovine ovaries without CL or dominant follicle can have positive effects on CE, embryo development, and blastocyst quality in an individual embryo production system set-up.
Collapse
Affiliation(s)
- Nima Azari-Dolatabad
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium.
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daniel Angel Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Research Group in Animal Sciences - INCA-CES, School of Veterinary Medicine and Animal Production, Universidad CES, Medellin, Colombia
| | - Andrea Fernandez Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hafez Sadeghi
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gretania Residiwati
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jo L M R Leroy
- Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Gonzalez-Plaza A, Cambra JM, Parrilla I, Gil MA, Martinez EA, Martinez CA, Cuello C. The Open Cryotop System Is Effective for the Simultaneous Vitrification of a Large Number of Porcine Embryos at Different Developmental Stages. Front Vet Sci 2022; 9:936753. [PMID: 35812891 PMCID: PMC9257686 DOI: 10.3389/fvets.2022.936753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Superfine Open Pulled Straw (SOPS) system is the most commonly used method for vitrification of pig embryos. However, this system only allows the vitrification of four to seven embryos per straw. In this study, we investigated the effectiveness of the open (OC) and closed (CC) Cryotop® systems to simultaneously vitrify a larger number of porcine embryos. Morulae, early blastocysts and full blastocysts were vitrified with the open Cryotop® (n = 250; 20 embryos per device) system, the closed Cryotop® (n = 158; 20 embryos per device) system and the traditional superfine open pulled straw (SOPS; n = 241; 4–7 embryos per straw) method. Fresh embryos from each developmental stage constituted the control group (n = 132). Data expressed as percentages were compared with the Fisher's exact test. The Kruskal-Wallis test was used to analyze the effect of the different vitrification systems on the embryo quality parameters and two-by-two comparisons were accomplished with the Mann-Whitney U test. Differences were considered statistically significant when p < 0.05. Vitrified and control embryos were incubated for 24 h and examined for viability and quality. At the warming step, the embryo recovery rate for the CC system was 51%, while all embryos were recovered when using OC and SOPS. There were no differences between the vitrification and control groups in the postwarming viability of full blastocysts. In contrast, morulae and early blastocysts that were vitrified-warmed with the SOPS system had lower viability (p < 0.01) compared to those from the OC, CC and control groups. The embryonic viability was similar between the OC and control groups, regardless of the developmental stage considered. Moreover, the embryos from the OC group had comparable total cell number and cells from the inner cell mass and apoptotic index than the controls. In conclusion, the OC system is suitable for the simultaneous vitrification of 20 porcine embryos at different developmental stages and provides comparable viability and quality results to fresh embryos subjected to 24 h of in vitro culture.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), Division of Children's and Women's Health/Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Cristina A. Martinez
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- Cristina Cuello
| |
Collapse
|
8
|
Zhang S, Yao Z, Li X, Zhang Z, Liu X, Yang P, Chen N, Xia X, Lyu S, Shi Q, Wang E, Ru B, Jiang Y, Lei C, Chen H, Huang Y. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics 2022; 23:460. [PMID: 35729510 PMCID: PMC9215082 DOI: 10.1186/s12864-022-08645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Crossbreeding is an important way to improve production beef cattle performance. Pinan cattle is a new hybrid cattle obtained from crossing Piedmontese bulls with Nanyang cows. After more than 30 years of cross-breeding, Pinan cattle show a variety of excellent characteristics, including fast growth, early onset of puberty, and good meat quality. In this study, we analyzed the genetic diversity, population structure, and genomic region under the selection of Pinan cattle based on whole-genome sequencing data of 30 Pinan cattle and 169 published cattle genomic data worldwide. RESULTS: Estimating ancestry composition analysis showed that the composition proportions for our Pinan cattle were mainly Piedmontese and a small amount of Nanyang cattle. The analyses of nucleotide diversity and linkage disequilibrium decay indicated that the genomic diversity of Pinan cattle was higher than that of European cattle and lower than that of Chinese indigenous cattle. De-correlated composite of multiple selection signals, which combines four different statistics including θπ, CLR, FST, and XP-EHH, was computed to detect the signatures of selection in the Pinan cattle genome. A total of 83 genes were identified, affecting many economically important traits. Functional annotation revealed that these selected genes were related to immune (BOLA-DQA2, BOLA-DQB, LSM14A, SEC13, and NAALADL2), growth traits (CYP4A11, RPL26, and MYH10), embryo development (REV3L, NT5E, CDX2, KDM6B, and ADAMTS9), hornless traits (C1H21orf62), and climate adaptation (ANTXR2). CONCLUSION In this paper, we elucidated the genomic characteristics, ancestry composition, and selective signals related to important economic traits in Pinan cattle. These results will provide the basis for further genetic improvement of Pinan cattle and reference for other hybrid cattle related studies.
Collapse
Affiliation(s)
- Shunjin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zhi Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xinmiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China.
| |
Collapse
|
9
|
Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants (Basel) 2022; 11:antiox11061177. [PMID: 35740074 PMCID: PMC9220299 DOI: 10.3390/antiox11061177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.
Collapse
|
10
|
Gonzalez Andueza S, Azari-Dolatabad N, Benedetti C, Fernandez A, Angel-Velez D, Sadeghi H, Malledevarahalli S, Opsomer G, Van Soom A, Pascottini OB. Lycopene supplementation to serum-free embryo culture medium and its effect on development and quality of bovine blastocysts produced in vitro. Reprod Domest Anim 2022; 57:1277-1279. [PMID: 35694897 DOI: 10.1111/rda.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Selenium is commonly used as an antioxidant in a serum-free culture medium setting. However, lycopene has emerged as a potent antioxidant being twice as efficient as β-carotene and 10 times as efficient as α-tocopherol with beneficial effects when supplemented in a serum-free maturation medium. Here, we aimed to evaluate the effect of lycopene supplementation in a serum-free culture medium on blastocyst development and quality. After in vitro maturation and fertilization, presumed zygotes were cultured in groups of 25 in 50 μl droplets of synthetic oviductal fluid. Culture medium supplementation was done using four experimental groups: insulin, transferrin, selenium (ITS, control); ITS + DMSO (diluent control); ITS + DMSO-lycopene 0.1 μM (ITSL); and IT + DMSO-lycopene 0.1 μM (ITL). DMSO was used as a diluent for lycopene. Blastocyst development among experimental groups was fitted in mixed-effects models, and blastocyst quality parameters (assessed via differential apoptotic staining) were evaluated in mixed linear regression models. The cleavage (85.3 ± 2.4, 82.6 ± 2.7, 86 ± 2.3 and 86.4 ± 2.3% for control, diluent control, ITSL and ITL, respectively) and day 8 blastocyst rates (37.4 ± 3.3, 36.9 ± 3.4, 39.7 ± 3.3 and 46.2 ± 3.4% for control, diluent control, ITSL and ITL, respectively) were not different (p > .1) among experimental groups. Embryos produced in the ITL group resulted in blastocysts with higher total cell numbers (TCN; 141 ± 19.2), inner cell mass (ICM; 65.3 ± 11.6) and trophectoderm cells (TE; 75.2 ± 8.8) compared with the control (129 ± 19.2, 56.3 ± 11.6 and 72.7 ± 8.8, for TCN, ICM and TE; p < .01, respectively). Lycopene-supplemented groups (ITSL and ITL) resulted in blastocysts with similar TCN, ICM and TE (p > .2). The number of apoptotic cells was not different among experimental groups (p > .1). Lycopene supplementation to the culture medium only produced a numerical increase in the blastocyst rate but replacing selenium with lycopene in a serum-free culture medium resulted in blastocysts with more cells.
Collapse
Affiliation(s)
- Sebastian Gonzalez Andueza
- Faculty of Veterinary Science, National University of Asuncion, San Lorenzo, Paraguay.,Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Nima Azari-Dolatabad
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Andrea Fernandez
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Daniel Angel-Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.,Research Group in Animal Sciences-INCA-CES, Universidad CES, Medellin, Colombia
| | - Hafez Sadeghi
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Sanjana Malledevarahalli
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.,Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
11
|
Pavani KC, Meese T, Pascottini OB, Guan X, Lin X, Peelman L, Hamacher J, Van Nieuwerburgh F, Deforce D, Boel A, Heindryckx B, Tilleman K, Van Soom A, Gadella BM, Hendrix A, Smits K. Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts. Proc Natl Acad Sci U S A 2022; 119:e2122708119. [PMID: 35298333 PMCID: PMC8944274 DOI: 10.1073/pnas.2122708119] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Collapse
Affiliation(s)
- Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - XueFeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, D-53115 Bonn, Germany
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium
- Cancer Research Institute Ghent, B-9000 Ghent, Belgium
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| |
Collapse
|
12
|
Lycopene Supplementation to Serum-Free Maturation Medium Improves In Vitro Bovine Embryo Development and Quality and Modulates Embryonic Transcriptomic Profile. Antioxidants (Basel) 2022; 11:antiox11020344. [PMID: 35204226 PMCID: PMC8868338 DOI: 10.3390/antiox11020344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
Bovine embryos are typically cultured at reduced oxygen tension to lower the impact of oxidative stress on embryo development. However, oocyte in vitro maturation (IVM) is performed at atmospheric oxygen tension since low oxygen during maturation has a negative impact on oocyte developmental competence. Lycopene, a carotenoid, acts as a powerful antioxidant and may protect the oocyte against oxidative stress during maturation at atmospheric oxygen conditions. Here, we assessed the effect of adding 0.2 μM lycopene (antioxidant), 5 μM menadione (pro-oxidant), and their combination on the generation of reactive oxygen species (ROS) in matured oocytes and the subsequent development, quality, and transcriptome of the blastocysts in a bovine in vitro model. ROS fluorescent intensity in matured oocytes was significantly lower in the lycopene group, and the resulting embryos showed a significantly higher blastocyst rate on day 8 and a lower apoptotic cell ratio than all other groups. Transcriptomic analysis disclosed a total of 296 differentially expressed genes (Benjamini–Hochberg-adjusted p < 0.05 and ≥ 1-log2-fold change) between the lycopene and control groups, where pathways associated with cellular function, metabolism, DNA repair, and anti-apoptosis were upregulated in the lycopene group. Lycopene supplementation to serum-free maturation medium neutralized excess ROS during maturation, enhanced blastocyst development and quality, and modulated the transcriptomic landscape.
Collapse
|
13
|
Gonzalez-Ramiro H, Cuello C, Cambra JM, Gonzalez-Plaza A, Vazquez JM, Vazquez JL, Rodriguez-Martinez H, Gil MA, Lucas-Sanchez A, Parrilla I, Martinez EA. A Short-Term Altrenogest Treatment Post-weaning Followed by Superovulation Reduces Pregnancy Rates and Embryo Production Efficiency in Multiparous Sows. Front Vet Sci 2021; 8:771573. [PMID: 34869743 PMCID: PMC8637542 DOI: 10.3389/fvets.2021.771573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Although embryo transfer (ET) is a biotechnology ready for the swine industry, there are factors to be solved, the availability of embryo donors as one. Multiparous sows as donors ought to be considered since weaning is a natural and efficient method for estrus synchronization. In addition, superovulation treatments at weaning are effective in increasing the efficiency of donor embryo production. However, ET programs typically require more donors than those available from a single weaning, imposing grouping several weanings to establish a batch for ET. Since short-term administration of Altrenogest is effective in delaying estrus after weaning without effects on ovulation and embryo development, we investigated how Altrenogest combined with superovulation would affect reproductive parameters and embryo quality and quantity of weaned multiparous donor sows. The sows were administered Altrenogest from the day of weaning for 14 (SS-14 group; N = 26), 7 (SS-7 group; N = 31) and 4 (SS-4 group; N = 32) days. The sows were superovulated with eCG 24 h after the last administration of Altrenogest and with hCG at the onset of estrus. Sows not treated with Altrenogest that were superovulated with eCG 24 h post-weaning and hCG at the onset of estrus (SC group; N = 37) and sows with natural estrus after weaning (C group; N = 34) were used as control groups. The percentage of sows showing estrus within 10 days was not affected by the treatment, but the interval from Altrenogest withdrawal to estrus was longer (P < 0.05) in the SS groups than the interval from weaning to estrus in the controls. SS treatments increased (P < 0.05) the percentage of sows with ovarian cysts and the development of polycystic ovaries. The pregnancy and the fertilization rates, and the overall embryo production efficiency were also negatively affected by the SS treatments (P < 0.05). Interestingly, almost 70% of the structures classified as unfertilized oocytes or degenerated embryos in sows from the SS groups were immature oocytes. In conclusion, although superovulation of weaned sows was highly efficient, short-term administration of Altrenogest in combination with superovulation had negative effects on most of the reproductive parameters assessed, particularly affecting the overall efficiency of pregnancy and embryo production.
Collapse
Affiliation(s)
- Henar Gonzalez-Ramiro
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain.,Department of Research and Development, Grupo Agropor I+D+I, AIE, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, Institute for Biomedical Research of Murcia, University of Murcia, Murcia, Spain
| |
Collapse
|
14
|
Wrenzycki C. Parameters to identify good quality oocytes and embryos in cattle. Reprod Fertil Dev 2021; 34:190-202. [PMID: 35231232 DOI: 10.1071/rd21283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oocyte/embryo selection methodologies are either invasive or noninvasive and can be applied at various stages of development from the oocyte to cleaved embryos and up to the blastocyst stage. Morphology and the proportion of embryos developing to the blastocyst stage are important criteria to assess developmental competence. Evaluation of morphology remains the method of choice for selecting viable oocytes for IVP or embryos prior to transfer. Although non-invasive approaches are improving, invasive ones have been extremely helpful in finding candidate genes to determine oocyte/embryo quality. There is still a strong need for further refinement of existing oocyte and embryo selection methods and quality parameters. The development of novel, robust and non-invasive procedures will ensure that only embryos with the highest developmental potential are chosen for transfer. In the present review, various methods for assessing the quality of oocytes and preimplantation embryos, particularly in cattle, are considered. These methods include assessment of morphology including different staining procedures, transcriptomic and proteomic analyses, metabolic profiling, as well as the use of artificial intelligence technologies.
Collapse
Affiliation(s)
- Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic for Veterinary Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Frankfurter Straße 106, Giessen 35392, Germany
| |
Collapse
|
15
|
Residiwati G, Azari-Dolatabad N, Tuska HSA, Sidi S, Van Damme P, Benedetti C, Montoro AF, Luceno NL, Budiono, Pavani KC, Opsomer G, Van Soom A, Bogado Pascottini O. Effect of lycopene supplementation to bovine oocytes exposed to heat shock during in vitro maturation. Theriogenology 2021; 173:48-55. [PMID: 34332201 DOI: 10.1016/j.theriogenology.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
We investigated the effect of the antioxidant lycopene supplemented into the in vitro maturation medium (TCM-199 with 20 ng/mL epidermal growth factor and 50 mg/mL gentamycin) in a heat shock (HS) model to mimic in vivo heat stress conditions. Bovine cumulus-oocyte complexes were supplemented with 0.2 μM lycopene (or not supplemented; control) under HS (40.5 °C) and non-HS (NHS; 38.5 °C) during maturation. After 22 h of maturation, we evaluated the nuclear status of the oocytes, the level of reactive oxygen species (ROS) production, and the respective blastocyst development and quality (via differential staining). Data were fitted in logistic and linear regression models, and the replicates were set as a random effect. The nuclear maturation was higher in NHS (84.0 ± 3.2%; least square mean ± standard error) than HS control (60.4 ± 4.3%; P < 0.001). Remarkably, the nuclear maturation in HS lycopene (71.7 ± 4.1%) was similar to NHS control (P = 0.7). Under HS conditions lycopene reduced ROS production (27.4 ± 4.8; relative fluorescence units (RFU)) in comparison to HS control (33.8 ± 1.8 RFU; P = 0.009). However, the ROS production in NHS lycopene (18.9 ± 2.0 RFU) was similar to NHS control (18.7 ± 1.8 RFU; P = 0.9). The cleavage rate in HS lycopene (76.1 ± 3.3%) was not lower than NHS lycopene (83.3 ± 2.5%; P > 0.1). On the day 8 of embryo development, the blastocyst rate was higher for NHS lycopene (55.2 ± 4.7%) versus NHS control (44.5 ± 4.7%; P = 0.04), but under HS the day 8 blastocyst rate was similar between control (29.9 ± 4.2%) and lycopene (32.3 ± 4.2%; P = 0.9). Lycopene supplementation increased the cell number of the embryos (total cell, trophectoderm, and inner cell mass numbers) under NHS conditions (P > 0.03). The apoptotic cell ratio was lower in lycopene (NHS and HS) versus control (NHS and HS) (P > 0.04). Lycopene has the ability to scavenge oocyte ROS and improved the cleavage rate of embryos under HS conditions. However, this could not be translated to a higher blastocyst development, which remained lower under HS. Results of our study indicate that antioxidant supplementation like lycopene during the maturation of bovine cumulus-oocyte complexes may be routinely used to improve blastocyst rate and quality under standard maturation conditions.
Collapse
Affiliation(s)
- G Residiwati
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium.
| | - N Azari-Dolatabad
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - H S A Tuska
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - S Sidi
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium; Department of Theriogenology and Animal Production, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - P Van Damme
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - C Benedetti
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - A F Montoro
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - N L Luceno
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - Budiono
- Gajayana University, Malang, East Java, Indonesia
| | - K C Pavani
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium
| | - O Bogado Pascottini
- Department of Reproduction, Obstetrics, and Herd Health, Ghent University, 9820, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
16
|
Xu L, Song SH, Idrees M, Mesalam A, Joo MD, Sidrat T, Wei Y, Lee KL, Lu W, Kong IK. Effects of Donor Cell Types on the Development of Bovine Embryos Using Cytoplasm Injection Cloning Technology. Int J Mol Sci 2021; 22:5841. [PMID: 34072531 PMCID: PMC8197982 DOI: 10.3390/ijms22115841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoplasm injection cloning technology (CICT) is an efficient technique for evaluating the developmental potential of cloned embryos. In this study, we investigated the effects of donor cell type on the developmental potential and quality of cloned bovine embryos. Adult fibroblasts (AFs) and embryonic cells (ECs) were used as donor cells to clone bovine embryos using CICT. We initially used AF cells to develop cloned embryos and then cultured the cloned day-8 blastocysts for 10 days to obtain ECs as donor cells for second embryo cloning. We found that the bovine blastocysts cloned using AF cells had significantly reduced developmental rates, embryo quality, and ratios of inner cell mass (ICM) to the total number of cells compared to those using ECs as donor cells. Furthermore, there were significant differences in the DNA methyltransferase-, histone deacetylation-, apoptosis-, and development-related genes at the blastocyst stage in embryos cloned from AFs compared to those in embryos cloned from ECs. Our results suggest that using ECs as donor cells for nuclear transfer enhances the quantity and quality of cloned embryos. However, further investigation is required in terms of determining pregnancy rates and developing cloned embryos from different donor cell types.
Collapse
Affiliation(s)
- Lianguang Xu
- Division of Applied Life Science (BK21 Four), Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Seok-Hwan Song
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Four), Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Yiran Wei
- Division of Applied Life Science (BK21 Four), Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Kyeong-Lim Lee
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Wenfa Lu
- Division of Animal Reproduction and Breeding, Department of Animal Science, Jilin Agricultural University, Changchun 130118, China;
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
17
|
Melatonin Alleviates the Toxicity of High Nicotinamide Concentrations in Oocytes: Potential Interaction with Nicotinamide Methylation Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5573357. [PMID: 33927796 PMCID: PMC8049830 DOI: 10.1155/2021/5573357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023]
Abstract
Despite the numerous studies on melatonin and nicotinamide (NAM, the active form of vitamin B3), the linkage between these two biomolecules in the context of signaling pathways regulating preimplantation embryo development has not yet been investigated. In this study, we used bovine oocyte model to elucidate the effect of melatonin on the developmental competence of oocytes under the stress of high NAM concentrations. Results showed that NAM (20 mM) administration during in vitro maturation (IVM) significantly reduced oocyte maturation and actin distribution, while induced reactive oxygen species (ROS) accumulation and mitochondrial dysfunction, the multiple deleterious effects that were alleviated by melatonin (10−7 M). The RT-qPCR and/or immunofluorescence showed upregulation of the apoptosis (Caspase-3, Caspase-9, and BAX), autophagy (Beclin-1, LC3A, LC3B, ATG7, LAMP1, and LAMP2), cell cycle (P21, P27, and P53), and DNA damage (COX2 and 8-OxoG) specific markers in oocytes matured under NAM treatment, compared to NAM-melatonin dual-treated and the untreated ones. In addition, the total cleavage and blastocyst development rate, as well as the total number of cells and the inner cell mass (ICM) per blastocyst, were reduced, while DNA fragmentation was induced, in the group of NAM sole treatment than NAM-melatonin cotreatment and control. Inspecting the underlying mechanisms behind NAM-associated toxicity revealed an increase in transcription pattern of NAM methylation (NNMT and AHCY) genes in NAM-treated oocytes while the opposite profile was observed upon melatonin supplementation. In conclusion, to our knowledge, this is the first study reporting that melatonin can protect oocytes and embryos from NAM-induced injury through its ROS-scavenging activity together with potential interaction with NAM methylation signaling.
Collapse
|
18
|
Azari-Dolatabad N, Raes A, Pavani KC, Asaadi A, Angel-Velez D, Van Damme P, Leroy JLMR, Van Soom A, Pascottini OB. Follicular fluid during individual oocyte maturation enhances cumulus expansion and improves embryo development and quality in a dose-specific manner. Theriogenology 2021; 166:38-45. [PMID: 33684781 DOI: 10.1016/j.theriogenology.2021.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
We evaluated the effect of supplementation of different concentrations of bovine follicular fluid (FF) during in vitro maturation (IVM) on oocyte development and blastocyst quality in group and individual culture conditions. To do so, in vitro maturation medium (TCM-199 with 20 ng/mL epidermal growth factor and 50 μg/mL gentamycin) was supplemented with 0 (control), 1, 5, or 10% of FF. Follicular fluid was collected from slaughterhouse-derived ovaries, selecting follicles between 12 and 20 mm in diameter. Oocytes were either produced in groups or individually matured, fertilized, and cultured to the blastocyst stage, allowing for separate follow-up of each oocyte. Development (cleavage and blastocyst rates) among experimental groups were fitted in mixed-effects models, and blastocyst quality parameters (assessed via differential apoptotic staining) were evaluated in mixed linear regression models. We also assessed the cumulus expansion (prior and after maturation) for individual culture conditions, and their difference was fitted in mixed linear regression models. The FF was collected from two batches, with an estradiol/progesterone ratio higher than 1. The FF batch did not affect the development or blastocyst quality in group or individual culture conditions (P > 0.05). In group culture, development was similar among experimental groups (P > 0.05). Five or 10% of FF supplementation improved (P ˂ 0.05) aspects of blastocyst quality such as total cell numbers (TCN), trophectoderm (TE), inner cell mass (ICM), and ICM/TCN and apoptotic cells/TCN ratio in comparison to control. In the individual culture system, 5% FF supplementation increased (P ˂ 0.05) day 8 blastocyst rate (33 ± 3.4% (LSM ± SE)) in comparison to control (20 ± 2.7%) and 1% FF supplementation (19 ± 2.6%) but it was not different (P > 0.05) from 10% FF supplementation (28 ± 3.4%). Five percent of FF supplementation resulted in greater TCN, ICM, and ICM/TCN than control (P ˂ 0.05). It also resulted in a greater expansion of cumulus cell investment than the other groups (P ˂ 0.05), with a 3-fold increase compared to control. In conclusion, 5% of FF supplementation during IVM improved the cumulus expansion and the blastocyst development and quality in an individual culture system. However, FF supplementation during maturation in a group culture system did not increase development, but it modestly improved some embryo quality aspects when 5 or 10% of FF was added.
Collapse
Affiliation(s)
- Nima Azari-Dolatabad
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Annelies Raes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Anise Asaadi
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Daniel Angel-Velez
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Research Group in Animal Sciences - INCA-CES, School of Veterinary Medicine and Animal Production, Universidad CES, Medellin, Colombia
| | - Petra Van Damme
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jo L M R Leroy
- Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
19
|
The apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on three-dimensional oral mucosal model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111672. [PMID: 33545837 DOI: 10.1016/j.msec.2020.111672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
The application of digitally manufactured dental metals has aroused the attention on their biocompatibilities. Three-dimensional oral mucosal model (3D OMM) would provide excellent assessments to the biocompatibility. In the current study, we set to measure metal ion release levels in the extracts of cast gold-platinum alloy (Au-Pt), differently manufactured cobalt-chromium alloy (Co-Cr) and commercially pure titanium (cp-Ti). We further tested two scaffold materials of 3D OMM to determine the better one for the succedent work. Lastly, we evaluated the apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on mucosal cells based on 3D OMM. We found that, in the construction of 3D OMM, Matrigel showed better performance than bovine acellular dermal matrix. Thus, Matrigel was chosen to construct the 3D OMM in the succedent studies. The results of ion release and biological assessments showed that, firstly, cast Au-Pt and cp-Ti triggered less early apoptotic cells and ion release than cast Co-Cr, implying better chemical stability and biocompatibility of them; secondly, digitally manufactured (including CAD/CAM milling and SLM) Co-Cr showed significantly lower ion release levels and lesser early apoptotic effects on 3D OMM as compared to the cast one. Although cast cp-Ti released much more ions than CAD/CAM milling one, manufacturing methods had no impact on apoptotic effect of cp-Ti. Therefore, we believe that digital methods possess same or even better chemical stability and biocompatibility than conventional casting one. Thirdly, although increased autophagic levels are observed in all test groups, so far there is no evidence that the test metals trigger different levels of autophagy as compared to each other. In addition, correlation analysis indicates that Co, W, and Mn appear to be the potential inducements for the apoptotic and autophagic effects of Co-Cr.
Collapse
|
20
|
Jordaens L, van Hoeck V, Pintelon I, Thys S, Bols PEJ, Marei WFA, Leroy JLMR. Altered embryotrophic capacities of the bovine oviduct under elevated free fatty acid conditions: an in vitro embryo--oviduct co-culture model. Reprod Fertil Dev 2021; 32:553-563. [PMID: 32036843 DOI: 10.1071/rd19019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/01/2019] [Indexed: 01/26/2023] Open
Abstract
Maternal metabolic stress conditions are of growing importance in both human and dairy cattle settings as they can have significant repercussions on fertility. Upregulated lipolysis is a common trait associated with metabolic disorders and results in systemically elevated concentrations of non-esterified fatty acids (NEFAs). The effects of high NEFA concentrations on the follicular environment, oocyte and embryo development is well documented. However, knowledge on the effects of NEFAs within the oviduct, representing the initial embryonic growth environment, is currently lacking. Therefore, the experiments outlined here were designed to obtain fundamental insights into both the direct and indirect interactions between NEFAs, bovine oviductal cells and developing zygotes. Hence, zygotes were co-cultured with NEFA-pre-exposed bovine oviductal cells or subjected to simultaneous NEFA exposure during the co-culture period. The outcome parameters assessed were embryo development with cleavage (48h post insemination (pi)), morula (120-126h pi) and blastocyst (192h pi) rates, as well as morula intracellular lipid content and blastocyst quality using Bodipy and differential staining respectively. Our data suggest a direct embryotoxicity of NEFAs as well as impaired embryo development through a reduced oviductal ability to support and protect early embryo development.
Collapse
Affiliation(s)
- L Jordaens
- Laboratory for Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1 (U-building), B-2610 Wilrijk, Belgium
| | - V van Hoeck
- Laboratory for Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1 (U-building), B-2610 Wilrijk, Belgium
| | - I Pintelon
- Laboratory for Cell Biology and Histology, Antwerp Centre for Advanced Microscopy, University of Antwerp, Universiteitsplein 1 (T-building), B-2610 Wilrijk, Belgium
| | - S Thys
- Laboratory for Cell Biology and Histology, Antwerp Centre for Advanced Microscopy, University of Antwerp, Universiteitsplein 1 (T-building), B-2610 Wilrijk, Belgium
| | - P E J Bols
- Laboratory for Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1 (U-building), B-2610 Wilrijk, Belgium
| | - W F A Marei
- Laboratory for Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1 (U-building), B-2610 Wilrijk, Belgium; and Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, 11222 Giza, Egypt
| | - J L M R Leroy
- Laboratory for Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1 (U-building), B-2610 Wilrijk, Belgium; and Corresponding author.
| |
Collapse
|
21
|
Asaadi A, Dolatabad NA, Atashi H, Raes A, Van Damme P, Hoelker M, Hendrix A, Pascottini OB, Van Soom A, Kafi M, Pavani KC. Extracellular Vesicles from Follicular and Ampullary Fluid Isolated by Density Gradient Ultracentrifugation Improve Bovine Embryo Development and Quality. Int J Mol Sci 2021; 22:E578. [PMID: 33430094 PMCID: PMC7826877 DOI: 10.3390/ijms22020578] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF. Additionally, we evaluated whether the addition of EVs derived either by ODG UC or SEC from FF or AOF during oocyte maturation would yield extra benefits for embryo developmental competence. The characterization of EVs isolated using ODG UC or SEC from FF and AOF did not show any differences in terms of EV sizes (40-400 nm) and concentrations (2.4 ± 0.2 × 1012-1.8 ± 0.2 × 1013 particles/mL). Blastocyst yield and quality was higher in groups supplemented with EVs isolated from FF and AOF by ODG UC, with higher total cell numbers and a lower apoptotic cell ratio compared with the other groups (p < 0.05). Supplementing in vitro maturation media with EVs derived by ODG UC from AOF was beneficial for bovine embryo development and quality.
Collapse
Affiliation(s)
- Anise Asaadi
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz 7196484334, Iran;
| | - Nima Azari Dolatabad
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Hadi Atashi
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Animal Science, Shiraz University, Shiraz 7144165186, Iran
| | - Annelies Raes
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Petra Van Damme
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Michael Hoelker
- Department of Animal Breeding and Husbandry, University of Bonn, 53012 Bonn, Germany;
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium;
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Mojtaba Kafi
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz 7196484334, Iran;
| | - Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| |
Collapse
|
22
|
Li X, Gao Y. Synergistically fabricated polymeric nanoparticles featuring dual drug delivery system to enhance the nursing care of cervical cancer. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
N-(2-mercaptopropionyl)-glycine enhances in vitro pig embryo production and reduces oxidative stress. Sci Rep 2020; 10:18632. [PMID: 33122658 PMCID: PMC7596235 DOI: 10.1038/s41598-020-75442-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
This study evaluated the effects of different concentrations (1, 10, 25, 50, and 100 µM) of the antioxidant N-(2-mercaptopropionyl)-glycine (NMPG), during the culture of in vitro-fertilized porcine oocytes. While the highest concentrations of NMPG (50 and 100 µM) were toxic to the developing embryos during the first two days of culture, 25 µM NMPG achieved cleavage rates that were similar to those achieved by the control but did not sustain blastocyst production by Day 7 of culture. Compared to the control culture medium, the culture medium supplemented with 10 µM NMPG increased (P < 0.05) the rates of blastocyst formation, decreased (P < 0.05) the intracellular levels of reactive oxygen substances, and downregulated (P < 0.05) the expression of the oxidative stress related gene GPX1. In conclusion, these results demonstrated that supplementation of porcine embryo culture medium with 10 µM NMPG can attenuate oxidative stress and increase the yield of in vitro production of blastocysts.
Collapse
|
24
|
Marei WFA, Van den Bosch L, Pintelon I, Mohey-Elsaeed O, Bols PEJ, Leroy JLMR. Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions: a bovine in vitro model. Hum Reprod 2020; 34:1984-1998. [PMID: 31625574 DOI: 10.1093/humrep/dez161] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Can we use a mitochondrial-targeted antioxidant (Mitoquinone) during in vitro embryo culture to rescue developmental competence of oocytes matured under lipotoxic conditions, exhibiting mitochondrial dysfunction and oxidative stress? SUMMARY ANSWER Supplementation of embryo culture media with Mitoquinone reduced oxidative stress and prevented mitochondrial uncoupling in embryos derived from metabolically compromised oocytes in vitro, leading to higher blastocyst rates and lower blastomeric apoptosis. WHAT IS KNOWN ALREADY Maternal metabolic disorders, such as obesity and type-II diabetes are associated with hyperlipidemia and elevated free fatty acid (FFA) concentrations in the ovarian follicular fluid (FF). Oocyte maturation under these lipotoxic conditions results in increased oxidative stress levels, mitochondrial dysfunction, reduced developmental competence and disappointing IVF results. STUDY DESIGN, SIZE, DURATION A well-described bovine oocyte IVM model was used, where a pathophysiologically relevant elevated FF concentrations of palmitic acid (PA; 150 μM or 300 μM) were added to induce oxidative stress. After fertilization (Day 0, D0), zygotes were in vitro cultured (IVC, from D1 to D8) in standard fatty acid-free media in the presence or absence of Mitoquinone or its carrier triphenyl-phosphonium. PARTICIPANTS/MATERIALS, SETTING, METHODS Embryo cleavage and fragmentation (D2) and blastocyst rates (D8) were recorded. Mitochondrial activity and oxidative stress in cleaved embryos at D2 were determined using specific fluorogenic probes and confocal microscopy. D8 blastocysts were used to (i) examine the expression of marker genes related to mitochondrial unfolded protein responses (UPRmt; HSPD1 and HSPE1), mitochondrial biogenesis (TFAM), endoplasmic reticulum (ER) UPR (ATF4, ATF6 and BiP) and oxidative stress (CAT, GPX1 and SOD2) using real time RT-PCR; (ii) determine cell differentiation and apoptosis using CDX-2 and cleaved caspase-3 immunostaining; and (iii) measure mtDNA copy numbers. This was tested in a series of experiments with at least three independent replicates for each, using a total of 2525 oocytes. Differences were considered significant if a P value was <0.05 after Bonferroni correction. MAIN RESULTS AND THE ROLE OF CHANCE Exposure to PA during IVM followed by culture under control conditions resulted in a significant increase in oxidative stress in embryos at D2. This was associated with a significant reduction in mitochondrial inner membrane potential (uncoupling) compared with solvent control (P < 0.05). The magnitude of these effects was PA-concentration dependent. Consequently, development to the blastocysts stage was significantly hampered. Surviving blastocysts exhibited high apoptotic cell indices and upregulated mRNA expression indicating persistent oxidative stress, mitochondrial and ER UPRs. In contrast, supplementation of PA-derived zygotes with Mitoquinone during IVC (i) prevented mitochondrial uncoupling and alleviated oxidative stress at D2; and (ii) rescued blastocyst quality; normalized oxidative stress and UPR related genes and apoptotic cell indices (P > 0.01 compared with solvent control). Mitoquinone also improved blastocyst rate in PA-exposed groups, an effect that was dependent on PA concentration. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This is a fundamental study performed using a bovine in vitro model using PA-induced lipotoxicity during oocyte maturation. PA is the most predominant FFA in the FF that is known to induce lipotoxicity; however, in vivo maturation in patients suffering from maternal metabolic disorders involve more factors that cannot be represented in one model. Nevertheless, focusing on the carryover oxidative stress as a known key factor affecting developmental competence, and considering the novel beneficial rescuing effects of Mitoquinone shown here, we believe this model is of high biological relevance. WIDER IMPLICATIONS OF THE FINDINGS Human oocytes collected for IVF treatments from patients with maternal metabolic disorders are vulnerable to lipotoxicity and oxidative stress during in vivo maturation. The results shown here suggest that mitochondrial targeted therapy, such as using Mitoquinone, during IVC may rescue the developmental competence and quality of these compromised oocytes. After further clinical trials, this may be a valuable approach to increase IVF success rates for infertile patients experiencing metabolic disorders. STUDY FUNDING/COMPETING INTEREST(S) This study was financially supported by a BOF/KP grant number 34399, from the University of Antwerp, Belgium. W.F.A.M. was supported by a postdoctoral fellowship from the Research Foundation-Flanders (FWO), grant number 12I1417N, Antwerp, Belgium. The Leica SP 8 confocal microscope used in this study was funded by the Hercules Foundation of the Flemish Government (Hercules grant AUHA.15.12). All authors have no financial or non-financial competing interests to declare.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Lotte Van den Bosch
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Peter E J Bols
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
25
|
Seifi-Jamadi A, Zhandi M, Kohram H, Luceño NL, Leemans B, Henrotte E, Latour C, Demeyere K, Meyer E, Van Soom A. Influence of seasonal differences on semen quality and subsequent embryo development of Belgian Blue bulls. Theriogenology 2020; 158:8-17. [PMID: 32916520 PMCID: PMC7462895 DOI: 10.1016/j.theriogenology.2020.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 11/05/2022]
Abstract
Belgian Blue bulls are more susceptible to high temperature and humidity index (THI) than most other cattle breeds. Here, we investigated whether high ambient temperature during summer affected semen quality and subsequent embryo development in Belgian Blue cattle. For this purpose, semen samples were collected from six healthy mature Belgian Blue bulls in March (Low THI group; THI between 30.6 and 56.4) and August 2016 (High THI group; maximum THI of 83.7 during meiotic and spermiogenic stages of spermatogenesis; 14–28 days prior to semen collection) respectively. Motility, morphology, acrosome integrity, chromatin condensation, viability, and reactive oxygen species production were assessed for frozen-thawed semen. Moreover, the efficiency of blastocyst production from the frozen-thawed semen samples of the two groups was determined in vitro. Blastocyst quality was determined by assessing inner cell mass ratio and apoptotic cell ratio. Fresh ejaculates showed a higher sperm concentration in low THI when compared to the high THI group (P ≤ 0.05), whereas semen volume, subjective motility, and total sperm output were not affected (P > 0.05). In frozen-thawed semen, total and progressive motility, viability, and straight-line velocity were lower in high THI compared to the low THI group (P < 0.05), while H2O2 concentration, aberrant chromatin condensation, and abnormal spermatozoa were higher in the high THI group (P < 0.05). Blastocyst rates were significantly higher when low THI samples were used (P < 0.05). Moreover, the total cell number and trophectoderm cells were significantly higher (P < 0.05) in blastocysts derived from low THI samples, whereas the apoptotic cell ratio was significantly higher (P < 0.01) in blastocysts derived from high THI spermatozoa. In summary, our data show that elevated ambient temperature and humidity during summer can decrease the quality of frozen-thawed spermatozoa in Belgian Blue bulls and also affect subsequent embryo development. Belgian Blue bulls are more susceptible to heat stress than most other cattle breeds. Heat stress negatively affected the quality of Belgian Blue bulls’ spermatozoa. Summer high ambient temperature increased H2O2 production in thawed spermatozoa. Summer heat exposure increased morphological abnormalities of bull spermatozoa. Embryo development was decreased after the bulls were exposed to summer heat stress.
Collapse
Affiliation(s)
- Afshin Seifi-Jamadi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran; Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Hamid Kohram
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Núria Llamas Luceño
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Emilie Henrotte
- AWE Group, Production and Distribution Direction- Inovéo, Chemin Du Tersoit 32, 5590 Ciney, Belgium
| | - Catherine Latour
- AWE Group, Production and Distribution Direction- Inovéo, Chemin Du Tersoit 32, 5590 Ciney, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
26
|
Residiwati G, Tuska HSA, Dolatabad NA, Sidi S, Van Damme P, Pavani KC, Pascottini OB, Opsomer G, Van Soom A. Crossbreeding effect of double-muscled cattle on in vitro embryo development and quality. Reprod Biol 2020; 20:288-292. [PMID: 32741722 DOI: 10.1016/j.repbio.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Nowadays, several developing countries have started to breed double-muscled cattle to their autochthonous cattle to improve meat production. However, the developmental competence of the resultant crossbreeding embryos is unknown. The objective of this study was to evaluate the effect of crossbreeding double-muscled (Belgian Blue; BB) semen with beef (Limousin; LIM) and dairy (Holstein-Friesian; HF) derived oocytes on embryo development and quality, using purebred BB as a control (BB oocytes fertilized by BB sperm). A single ejaculate of a BB bull was evaluated by Computer Assisted Sperm Analysis before using for in vitro fertilization. Ovaries from each breed were collected at the local slaughterhouse (n = 1,720 oocytes). All statistical analyses were performed using R-core (P < 0.05). Embryo quality was evaluated via differential-apoptotic staining of day 8 blastocysts. Cleavage (48 h post insemination) and day 8 blastocyst rates were greater (P < 0.05) for LIM (82.9 ± 6 and 27 ± 4.3%, respectively) than for BB (69.8 ± 8.5 and 19.6 ± 3.1%, respectively) and HF (45.1 ± 10 and 12.3 ± 2.2%, respectively). Holstein-Friesian presented lower cleavage and day 8 blastocyst rates than BB (P < 0.05). Limousin blastocysts presented a higher number (P < 0.05) of inner cell mass cells (ICM; 68 ± 7.8) than HF (40.4 ± 8.2). In conclusion, crossbreeding double-muscled cattle by in vitro fertilization with LIM oocytes yielded better embryo compared with the purebred combination, while the combination with HF oocytes produced the lowest rate of blastocysts.
Collapse
Affiliation(s)
- Gretania Residiwati
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Habib S A Tuska
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nima-Azari Dolatabad
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Shehu Sidi
- Department of Theriogenology and Animal Production, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Petra Van Damme
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Krishna C Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
27
|
He H, Zhang H, Li Q, Fan J, Pan Y, Zhang T, Robert N, Zhao L, Hu X, Han X, Yang S, Cui Y, Yu S. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020; 156:46-58. [PMID: 32673901 DOI: 10.1016/j.theriogenology.2020.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Mammalian oocyte maturation and early embryo development are highly sensitive to the in vitro culture environment, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effects of different oxygen concentrations (20%, 10%, 5% or 1% O2) on yak oocyte maturation, in vitro fertilization (IVF), and embryo development competence, as well as its effects on the oxidative response, metabolism, and apoptosis in cumulus-oocyte complexes (COCs) and the embryo. The results revealed that the maturation rate of oocytes, blastocysts rate and hatched blastocysts rate in the group with 5% oxygen concentration were significantly higher (P < 0.05) than other groups, but the cleavage rate with 5% oxygen concentration was significantly lower (P < 0.05) than the 20% and 10% oxygen concentrations. The maturation rate of oocytes, the cleavage rate, blastocysts rate and hatched blastocysts rate with the 1% oxygen concentration were the lowest. The blastocyst cultured with 5% oxygen concentration had significantly greater (P < 0.05) numbers of total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells compared to the other groups. Analysis of the apoptosis index of oocytes and blastocyst cells by transferase dUTP nick end labeling (TUNEL) showed that the number of apoptotic cells significantly reduced (P < 0.05) with 5% oxygen concentration, but increased significantly (P < 0.05) in the 1% oxygen concentration group. Also, the qRT-PCR and western immunoblotting analysis confirmed that the transcription levels of the metabolism genes, antioxidant response genes, apoptosis genes, oocyte competence genes and embryonic developmental markers showed significant differences (P < 0.05) in the COCs or blastocysts matured in 5% oxygen concentration group compared to the other groups. In summary, our findings demonstrate that 5% oxygen concentration improves oocyte maturation and blastocyst development in the yak, increases blastocyst cell numbers, reduces apoptosis rate in the oocyte and blastocyst as well as reduces embryo cleavage rate.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuequan Hu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
28
|
Karagenç N, Doğan G, Esmen K, Kul BÇ, Yeşilkaya H, Orman MN, Sandıkçı M, Ünsal H, Karagenç L. Transfer of mouse blastocysts exposed to ambient oxygen levels can lead to impaired lung development and redox balance. Mol Hum Reprod 2020; 25:745-754. [PMID: 31504752 DOI: 10.1093/molehr/gaz052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023] Open
Abstract
In vitro culture under atmospheric oxygen puts embryos under oxidative stress and impairs preimplantation development. However, to what extent this process alters the redox balance in the perinatal period remains largely unknown. The aim of the present study was to examine if the redox balance is altered in the lung tissue of fetuses generated through transfer of mouse embryos exposed to atmospheric oxygen at different stages of development and to determine if this has any effect on lung morphogenesis and gene expression. Two experimental groups (EGs) were generated by transferring in vitro- and in vivo-derived blastocysts to pseudo-pregnant females. In vivo-developed fetuses served as control. Enzymatic/nonenzymatic antioxidants, malondialdehyde (MDA) levels, total antioxidant capacity, stage of lung development and gene expression were evaluated on day 18 of pregnancy. Weight of fetuses was significantly less in both experimental cohorts (ANOVA, P < 0.001 versus control), associated with delayed lung development, higher amounts of MDA (ANOVA, P < 0.001 versus control) and altered expression of several genes in oxidative stress/damage pathways. Evidence gathered in the present study indicates that pre-implantation stress caused by culture under atmospheric oxygen, even for a short period of time, leads to fetal growth restriction, impaired lung development and redox balance along with dysregulation of several genes in oxidative stress response. Absence of an EG in which in vitro embryo culture was performed at 5% oxygen and the use of genetically heterogeneous F2 fetuses are the limitations of the study. In any case, the long-term impact of such dramatic changes in the developmental programming of resulting fetuses warrants further investigations.
Collapse
Affiliation(s)
- Nedim Karagenç
- Faculty of Medicine, Department of Medical Genetics, Pamukkale University, Denizli, Turkey
| | - Göksel Doğan
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Adnan Menderes University, Aydın, Turkey
| | - Kerem Esmen
- Faculty of Medicine, Department of Basic Medical Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Bengi Çınar Kul
- Faculty of Veterinary Medicine, Department of Genetics, Ankara University, Ankara, Turkey
| | - Hasan Yeşilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Mehmet Nurullah Orman
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Ege University, İzmir, Turkey
| | - Mustafa Sandıkçı
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Adnan Menderes University, Aydın, Turkey
| | - Hümeyra Ünsal
- Faculty of Veterinary Medicine, Department of Physiology, Adnan Menderes University, Aydın, Turkey
| | - Levent Karagenç
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
29
|
Loren P, Sánchez-Villalba E, Risopatrón J, Arias ME, Felmer R, Sánchez R. Induction of oxidative stress does not increase the cryotolerance of vitrified embryos. Anim Reprod Sci 2020; 219:106511. [PMID: 32828397 DOI: 10.1016/j.anireprosci.2020.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Short-term treatment of mammalian oocytes with different stressors induces stress tolerance of embryos derived from these oocytes. The aims of this study were to evaluate effects on embryo development when there was treatment of oocyte complexes (COCs) used to derive the embryos with hydrogen peroxide (H2O2).The COCs were not incubated with H2O2: control (0 μM), or were incubated with 25, 50, 75, or 100 μM concentrations of H2O2 for 1 h prior to in vitro fertilization, and presumptive zygotes were cultured until day 7. Blastocysts at day 7 of development derived from H2O2-treated (25 μM treatment concentration) COCs were vitrified. Percentage of embryos undergoing cleavage was not affected by any treatment, while percentage of embryos developing to the blastocyst stage was less when there was treatment of COCs with 100 μM of H2O2. Embryo quality was less when COCs used to derive blastocysts were treated with 50, 75, or 100 μM concentrations of H2O2. There were lesser relative abundances of some mRNA transcripts of interest in blastocysts when there was treatment of COCs with H2O2. After vitrification, there were no differences in embryo re-expansion and hatching rates compared with fresh and vitrified blastocysts of the control group and those derived from COCs treated with 25 μM H2O2. In conclusion, treatment of COCs used to derive blastocysts with H2O2 does not induce stress tolerance in vitrified embryos of cattle; however, the viability of these blastocysts is similar to those of the control group.
Collapse
Affiliation(s)
- P Loren
- Applied Cellular and Molecular Biology Program, Universidad de La Frontera, Temuco, Chile
| | - E Sánchez-Villalba
- Applied Cellular and Molecular Biology Program, Universidad de La Frontera, Temuco, Chile
| | - J Risopatrón
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Sánchez
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
30
|
Khan I, Mesalam A, Song SH, Kong IK. Supplementation of insulin-transferrin-sodium selenite in culture medium improves the hypothermic storage of bovine embryos produced in vitro. Theriogenology 2020; 152:147-155. [PMID: 32413800 DOI: 10.1016/j.theriogenology.2020.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
Hypothermic storage of gametes and embryos at 4 °C can be used as an alternative to cryopreservation, but hypothermic preservation can maintain embryo viability for a short duration only. This study investigated the effect of insulin-transferrin-sodium selenite (ITS) in embryo culture medium on hypothermic storage of bovine embryos at 4 °C. Day 7 bovine embryos were subjected to hypothermic storage in tissue culture medium 199 supplemented with 50% fetal bovine serum and 25 mM HEPES for different time durations. After recovery, the embryos were assessed for survival and hatching rate and gene and protein expression levels. Supplementation of embryo culture medium with ITS significantly increased (P < 0.05) the survival and hatching ability of blastocysts stored at 4 °C for 72 h compared to the control group (100% and 76.3% vs 68.5% and 40.5%, respectively). Furthermore, the beneficial effects of ITS on embryos were associated with greater (P < 0.05) total cell number per blastocyst and lesser apoptotic cells number. Moreover, embryos cultured in ITS had lower intracellular lipid content. The protein expression of sirt1 was greater (P < 0.05) in the ITS group, however, caspase3 protein expression was significantly lesser (P < 0.05) in the ITS group. Quantitative reverse transcription PCR indicated that the mRNA levels of SIRT1 and HSP70 were (P < 0.05) increased upon culture with ITS; however, the mRNA levels of the pro-apoptotic genes BAX and CASP3 were reduced (P < 0.05). Taken together, these data suggest that supplementation of embryo culture medium with ITS improves in vitro bovine embryo quality and survival following hypothermic storage.
Collapse
Affiliation(s)
- Imran Khan
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; Department of Chemistry, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, 24420, Pakistan
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Seok-Hwan Song
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
31
|
Deng T, Xie J, Ge H, Liu Q, Song X, Hu L, Meng L, Zhang C. Tauroursodeoxycholic acid (TUDCA) enhanced intracytoplasmic sperm injection (ICSI) embryo developmental competence by ameliorating endoplasmic reticulum (ER) stress and inhibiting apoptosis. J Assist Reprod Genet 2019; 37:119-126. [PMID: 31802346 DOI: 10.1007/s10815-019-01627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The objective of this study was to examine the effect of tauroursodeoxycholic acid (TUDCA) on intracytoplasmic sperm injection (ICSI) embryos by evaluating endoplasmic reticulum (ER) stress, apoptosis, and embryo developmental competence in vitro and in vivo. METHODS ER stress-associated genes and apoptosis-associated genes were measured and apoptosis index was analyzed. Embryo developmental competence was assessed in vitro and in vivo via the inner cell mass (ICM)/trophectoderm (TE) index, pregnancy and implantation rates, and birth rate. RESULTS The relative mRNA and protein expression of binding immunoglobulin protein (BIP) was significantly higher in the ICSI embryo group without TUDCA treatment (ICSI-C) than in the in vitro fertilization (IVF) group and in the ICSI embryo group with TUDCA treatment (200 μM) (ICSI-T), while TUDCA ameliorated ER stress in ICSI embryos. Embryos in the ICSI-C group showed a higher apoptosis index than those in the IVF group and ICSI-T group, and there was no significant difference between the IVF group and ICSI-T group. TUDCA can significantly improve ICSI embryo developmental competence in vitro and in vivo based on the ICM/TE index, pregnancy and implantation rates, and birth rate. CONCLUSION ICSI embryos manifested high ER stress and high apoptosis, while TUDCA ameliorated ER stress and reduced apoptosis in ICSI embryos. TUDCA can significantly improve the developmental competence of ICSI embryos in vitro and in vivo. This study provides a new idea for improving the efficiency of ICSI, and it will also have a positive effect on the development of assisted reproduction technologies for humans and other animals.
Collapse
Affiliation(s)
- Tengfei Deng
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Juanke Xie
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Hengtao Ge
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Qi Liu
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Xiaobing Song
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Lin Hu
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Li Meng
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,LA IVF Clinic, Los Angeles, CA, USA
| | - Cuilian Zhang
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China. .,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China. .,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.
| |
Collapse
|
32
|
Mesalam A, Lee KL, Khan I, Chowdhury MMR, Zhang S, Song SH, Joo MD, Lee JH, Jin JI, Kong IK. A combination of bovine serum albumin with insulin-transferrin-sodium selenite and/or epidermal growth factor as alternatives to fetal bovine serum in culture medium improves bovine embryo quality and trophoblast invasion by induction of matrix metalloproteinases. Reprod Fertil Dev 2019; 31:333-346. [PMID: 30086822 DOI: 10.1071/rd18162] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/07/2018] [Indexed: 12/17/2022] Open
Abstract
This study investigated the use of bovine serum albumin (BSA) plus insulin-transferrin-sodium selenite (ITS) and/or epidermal growth factor (EGF) as alternatives to fetal bovine serum (FBS) in embryo culture medium. The developmental ability and quality of bovine embryos were determined by assessing their cell number, lipid content, gene expression and cryotolerance, as well as the invasion ability of trophoblasts. The percentage of embryos that underwent cleavage and formed a blastocyst was higher (P<0.01) in medium containing ITS plus EGF and BSA than in medium containing FBS. Culture with ITS plus EGF and BSA also increased the hatching ability of blastocysts and the total cell number per blastocyst. Furthermore, the beneficial effects of BAS plus ITS and EGF on embryos were associated with a significantly reduced intracellular lipid content, which increased their cryotolerance. An invasion assay confirmed that culture with ITS plus EGF and BSA significantly improved the invasion ability of trophoblasts. Real-time quantitative polymerase chain reaction analysis showed that the mRNA levels of matrix metalloproteinase-2 (MMP2) and MMP9, acyl-CoA synthetase long-chain family member 3, acyl-coenzyme A dehydrogenase long-chain and hydroxymethylglutaryl-CoA reductase significantly increased upon culture with ITS plus EGF and BSA. Moreover, protein expression levels of matrix metalloproteinase-2 and -9 increased (P<0.01) in medium supplemented with ITS plus EGF and BSA compared with medium supplemented with FBS. Taken together, these data suggest that supplementation of medium with ITS plus EGF and BSA improves invitro bovine embryo production, cryotolerance and invasion ability of trophoblasts.
Collapse
Affiliation(s)
- Ayman Mesalam
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Kyeong-Lim Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Imran Khan
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - M M R Chowdhury
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Shimin Zhang
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Seok-Hwan Song
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Jae-Hoon Lee
- Department of Veterinary Science, College of Veterinary Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Jong-In Jin
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| |
Collapse
|
33
|
The cytokine platelet factor 4 successfully replaces bovine serum albumin for the in vitro culture of porcine embryos. Theriogenology 2019; 148:201-207. [PMID: 31748174 DOI: 10.1016/j.theriogenology.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/29/2019] [Accepted: 11/09/2019] [Indexed: 01/30/2023]
Abstract
The cytokine platelet factor 4 (PF4) enhances differentiation and cell viability of different stem cells lines in vitro. This study investigated whether PF4 addition to customary pig embryo semi-defined culture media can improve their developmental outcome (Experiment 1) and ultimately replace the need for bovine serum albumin (BSA, Experiment 2). Experiment 1 added PF4 (100-1000 ng/mL, 0 = control) to NCSU-23 with 0.4 mg/mL BSA culturing 3430 presumptive zygotes. Experiment 2 added PF4 (100-1000 ng/mL, 0 = Control-PVA) to a BSA-free medium (NCSU-23 with 0.3 mg/mL PVA) culturing 3820 presumptive zygotes. Zygote culture in NCSU-23 with 0.4 mg/mL BSA was used as overall control. All groups of Experiment 1 displayed similar rates of day 2-cleavage (range: 65.0 ± 10.9 to 70.0 ± 5.8%); of day 7-blastocyst rates (range: 46.6 ± 10.0 to 56.4 ± 8.2%) and of total day 7-blastocyst efficiency (range: 32.3 ± 8.3 to 37.2 ± 7.3%). Addition of PF4 did not affect total cell numbers of day 7 blastocysts (range: 44.1 ± 23.2 to 50.5 ± 26.4). In Experiment 2, PF4 accelerated embryo development, increasing (P < 0.01) blastocyst yield compared to 0-PF4, and blastocyst formation by day 5 adding PF4 100-500 ng/mL (range: 29.9 ± 7.8 to 31.8 ± 5.5%; P < 0.05) compared with BSA-control (17.2 ± 8.2%) and PF4 1000 ng/mL (15.5 ± 7.9%); showing similar blastocyst rates (range: 42.0 ± 11.5 to 49.3 ± 10.0%), total efficiency (28.0 ± 8.2 to 32.3 ± 7.1%) total cell numbers (range: 42.6 ± 19.3 to 45.7 ± 23.9) as BSA-controls. In conclusion, although PF4 did not show additive improvement under usual semi-defined, BSA-supplemented embryo media, it successfully replaced BSA sustaining porcine blastocyst production in chemically defined conditions.
Collapse
|
34
|
Llamas Luceño N, de Souza Ramos Angrimani D, de Cássia Bicudo L, Szymańska KJ, Van Poucke M, Demeyere K, Meyer E, Peelman L, Mullaart E, Broekhuijse MLWJ, Van Soom A. Exposing dairy bulls to high temperature-humidity index during spermatogenesis compromises subsequent embryo development in vitro. Theriogenology 2019; 141:16-25. [PMID: 31494458 DOI: 10.1016/j.theriogenology.2019.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
The possible impact of natural heat stress on animal fertility is currently a major concern for breeding companies. Here, we aimed to address this concern by determining the effects of natural heat stress on the fertility of Holstein bulls located in the Netherlands. Semen samples were collected from six bulls at two locations in March 2016 (low temperature-humidity index (THI) group; maximum THI of 51.8 and 55 at their respective locations) or August (high THI group; maximum THI of 77.9 and 80.5 during meiotic and spermiogenic stages of spermatogenesis, 42 to 14 days prior to semen collection). The effect of heat stress on semen quality was assessed by sperm morphology, motility, reactive oxygen species production, lipid peroxidation, viability, and DNA fragmentation. Moreover, we evaluated the development of embryos generated in vitro by low and high THI semen, and determined inner cell mass/trophectoderm ratio, apoptotic cell ratio, and embryonic gene expression in day-8 blastocysts. An increase in cell death (propidium iodide-positive cells; P = 0.039) was observed in the high THI group (31.5%) compared to the low THI group (27.6%). Moreover, a decrease (P < 0.001) was observed in the total blastocyst rates at day 7 post-insemination (15.3 vs 20.9%) and day 8 (23.2 vs 29.6%) in the high THI compared to the low THI group, respectively. There were no differences in the relative abundance of candidate transcripts examined. In conclusion, sperm samples from dairy bulls obtained during a period with higher THI had reduced viability and led to a decrease in blastocyst development and delayed hatching, compared to semen collected during a period with low THI.
Collapse
Affiliation(s)
- Núria Llamas Luceño
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Daniel de Souza Ramos Angrimani
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Luana de Cássia Bicudo
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Katarzyna J Szymańska
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
35
|
Lin X, Beckers E, Mc Cafferty S, Gansemans Y, Joanna Szymańska K, Chaitanya Pavani K, Catani JP, Van Nieuwerburgh F, Deforce D, De Sutter P, Van Soom A, Peelman L. Bovine Embryo-Secreted microRNA-30c Is a Potential Non-invasive Biomarker for Hampered Preimplantation Developmental Competence. Front Genet 2019; 10:315. [PMID: 31024625 PMCID: PMC6459987 DOI: 10.3389/fgene.2019.00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Recently, secreted microRNAs (miRNAs) have received a lot of attention since they may act as autocrine factors. However, how secreted miRNAs influence embryonic development is still poorly understood. We identified 294 miRNAs, 114 known, and 180 novel, in the conditioned medium of individually cultured bovine embryos. Of these miRNAs, miR-30c and miR-10b were much more abundant in conditioned medium of slow cleaving embryos compared to intermediate cleaving ones. MiR-10b, miR-novel-44, and miR-novel-45 were higher expressed in the conditioned medium of degenerate embryos compared to blastocysts, while the reverse was observed for miR-novel-113 and miR-novel-139. Supplementation of miR-30c mimics into the culture medium confirmed the uptake of miR-30c mimics by embryos and resulted in increased cell apoptosis, as also shown after delivery of miR-30c mimics in Madin-Darby bovine kidney cells (MDBKs). We also demonstrated that miR-30c directly targets Cyclin-dependent kinase 12 (CDK12) through its 3′ untranslated region (3′-UTR) and inhibits its expression. Overexpression and downregulation of CDK12 revealed the opposite results of the delivery of miRNA-30c mimics and inhibitor. The significant down-regulation of several tested DNA damage response (DDR) genes, after increasing miR-30c or reducing CDK12 expression, suggests a possible role for miR-30c in regulating embryo development through DDR pathways.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Beckers
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Séan Mc Cafferty
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | - João Portela Catani
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Petra De Sutter
- Department of Uro-Gynaecology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
36
|
Pavani KC, Hendrix A, Van Den Broeck W, Couck L, Szymanska K, Lin X, De Koster J, Van Soom A, Leemans B. Isolation and Characterization of Functionally Active Extracellular Vesicles from Culture Medium Conditioned by Bovine Embryos In Vitro. Int J Mol Sci 2018; 20:ijms20010038. [PMID: 30577682 PMCID: PMC6337605 DOI: 10.3390/ijms20010038] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a possible role in cell–cell communication and are found in various body fluids and cell conditioned culture media. The aim of this study was to isolate and characterize EVs in culture medium conditioned by bovine embryos in group and to verify if these EVs are functionally active. Initially, ultracentrifuged bovine serum albumin (BSA) containing medium was selected as suitable EV-free embryo culture medium. Next, EVs were isolated from embryo conditioned culture medium by OptiPrepTM density gradient ultracentrifugation. Isolated EVs were characterized by nanoparticle tracking analysis, western blotting, transmission, and immunoelectron microscopy. Bovine embryo-derived EVs were sizing between 25–230 nm with an average concentration of 236.5 ± 1.27 × 108 particles/mL. Moreover, PKH67 EV pre-labeling showed that embryo-secreted EVs were uptaken by zona-intact bovine embryos. Since BSA did not appear to be a contaminating EV source in culture medium, EV functionality was tested in BSA containing medium. Individual embryo culture in BSA medium enriched with EVs derived from conditioned embryo culture medium showed significantly higher blastocyst rates at day 7 and 8 together with a significantly lower apoptotic cell ratio. In conclusion, our study shows that EVs play an important role in inter embryo communication during bovine embryo culture in group.
Collapse
Affiliation(s)
- Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, C. Heymanslaan 10, B-9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), C. Heymanslaan 10, B-9000 Ghent, Belgium.
| | - Wim Van Den Broeck
- Department of Morphology-Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Liesbeth Couck
- Department of Morphology-Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Katarzyna Szymanska
- Department of Basic Medical Sciences-Physiology group, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - Xiaoyuan Lin
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | - Jenne De Koster
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
37
|
Vandenberghe LTM, Heindryckx B, Smits K, Popovic M, Szymanska K, Bonte D, Peelman L, Deforce D, De Sutter P, Van Soom A, De Schauwer C. Intracellular localisation of platelet-activating factor during mammalian embryo development in vitro: a comparison of cattle, mouse and human. Reprod Fertil Dev 2018; 31:658-670. [PMID: 30458920 DOI: 10.1071/rd18146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/05/2018] [Indexed: 11/23/2022] Open
Abstract
Platelet-activating factor (PAF) is a well-known marker for embryo quality and viability. For the first time, we describe an intracellular localisation of PAF in oocytes and embryos of cattle, mice and humans. We showed that PAF is represented in the nucleus, a signal that was lost upon nuclear envelope breakdown. This process was confirmed by treating the embryos with nocodazole, a spindle-disrupting agent that, as such, arrests the embryo in mitosis, and by microinjecting a PAF-specific antibody in bovine MII oocytes. The latter resulted in the absence of nuclear PAF in the pronuclei of the zygote and reduced further developmental potential. Previous research indicates that PAF is released and taken up from the culture medium by preimplantation embryos invitro, in which bovine serum albumin (BSA) serves as a crucial carrier molecule. In the present study we demonstrated that nuclear PAF does not originate from an extracellular source because embryos cultured in polyvinylpyrrolidone or BSA showed similar levels of PAF in their nuclei. Instead, our experiments indicate that cytosolic phospholipase A2 (cPLA2) is likely to be involved in the intracellular production of PAF, because treatment with arachidonyl trifluoromethyl ketone (AACOCF3), a specific cPLA2 inhibitor, clearly lowered PAF levels in the nuclei of bovine embryos.
Collapse
Affiliation(s)
- L T M Vandenberghe
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - M Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - K Szymanska
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - C De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
38
|
Nohalez A, Martinez C, Parrilla I, Roca J, Gil M, Rodriguez-Martinez H, Martinez E, Cuello C. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology 2018; 113:113-119. [DOI: 10.1016/j.theriogenology.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 01/30/2023]
|
39
|
Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod 2018; 96:1181-1196. [PMID: 28520897 DOI: 10.1093/biolre/iox046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/17/2017] [Indexed: 12/22/2022] Open
Abstract
Elevated concentrations of free fatty acids (FFAs), predominantly palmitic, stearic, and oleic acids (PSO), exert detrimental effects on oocyte developmental competence. This study examined the effects of omega-3 alpha-linolenic acid (ALA) during in vitro oocyte maturation (IVM) in the presence of PSO on subsequent embryo development and quality, and the cellular mechanisms that might be involved. Bovine cumulus-oocyte complexes (COCs) were supplemented during IVM with ALA (50 μM), PSO (425 μM), or PSO+ALA. Compared with FFA-free controls (P < 0.05), PSO increased embryo fragmentation and decreased good quality embryos on day 2 postfertilization. Day 7 blastocyst rate was also reduced. Day 8 blastocysts had lower cell counts and higher apoptosis but normal metabolic profile. In the PSO group, cumulus cell (CC) expansion was inhibited with an increased CC apoptosis while COC metabolism was not affected. Mitochondrial inner membrane potential (MMP; JC-1 staining) was reduced in the CCs and oocytes. Heat shock protein 70 (HSP70) but not glucose-regulated protein 78 kDa (GRP78, known as BiP; an endoplasmic reticulum stress marker) was upregulated in the CCs. Higher reactive oxygen species levels (DCHFDA staining) were detected in the oocytes. In contrast, adding ALA in the presence of PSO normalized embryo fragmentation, cleavage, blastocyst rates, and blastocyst quality compared to controls (P > 0.05). Combined treatment with ALA also reduced CC apoptosis, partially recovered CC expansion, abrogated the reduction in MMP in the CCs but not in the oocytes, and reduced BiP and HSP70 expression in CCs, compared with PSO only (P < 0.05). In conclusion, ALA supplementation protected oocyte developmental capacity under lipotoxic conditions mainly by protecting cumulus cell viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Jessie De Bie
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter E J Bols
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
40
|
Pascottini OB, Catteeuw M, Van Soom A, Opsomer G. Holding immature bovine oocytes in a commercial embryo holding medium: High developmental competence for up to 10 h at room temperature. Theriogenology 2018; 107:63-69. [DOI: 10.1016/j.theriogenology.2017.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 11/30/2022]
|
41
|
Supplementation of l-carnitine during in vitro maturation improves embryo development from less competent bovine oocytes. Theriogenology 2017; 102:16-22. [DOI: 10.1016/j.theriogenology.2017.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/12/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
|
42
|
Chen P, Pan Y, Cui Y, Wen Z, Liu P, He H, Li Q, Peng X, Zhao T, Yu S. Insulin-like growth factor I enhances the developmental competence of yak embryos by modulating aquaporin 3. Reprod Domest Anim 2017; 52:825-835. [DOI: 10.1111/rda.12985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/19/2017] [Indexed: 12/27/2022]
Affiliation(s)
- P Chen
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Y Pan
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Y Cui
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Z Wen
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - P Liu
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - H He
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - Q Li
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - X Peng
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - T Zhao
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - S Yu
- Gansu Province Livestock Embryo Engineering Research Center; College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| |
Collapse
|
43
|
Wen Z, Pan Y, Cui Y, Peng X, Chen P, Fan J, Li G, Zhao T, Zhang J, Qin S, Yu S. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A. Theriogenology 2017; 93:16-23. [PMID: 28257862 DOI: 10.1016/j.theriogenology.2017.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is known to promote the development and survival of rodents and ruminants preimplantation embryos; however, the effect of CSF2 on yak embryos has not been reported. The objective of this study was to investigate the effects of CSF2 on the developmental competence of yak embryos cultured in vitro in modified synthetic oviduct fluid (mSOF) medium and on the expression pattern of heat shock protein 70 kDa 1A (HSPA1A). In each experiment, cumulus-oocyte complexes (COCs) were matured in vitro and fertilized with frozen-thawed semen. Zygotes were treated with varying concentrations of CSF2 (0, 10, 50, 100 ng/mL) until day 8 after fertilization. Embryo development was calculated as the percentage of oocytes that formed embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst stages. The total cell numbers (TCN) per blastocyst and their allocation to the inner cell mass (ICM) and trophectoderm (TE) lineages were determined using differential CDX2 staining. The expression of HSPA1A was examined by quantitative real-time PCR (qRT-PCR) and immunochemistry to determine the mRNA and protein levels. The results showed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) increased the rate of blastocyst formation (19.01% versus 9.93%) and the TCN per blastocyst (96.94 versus 81.41) compared to the control group. However, no significant differences were observed in the other stages of development. qRT-PCR analysis confirmed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) inhibited the expression of HSPA1A mRNA in blastocysts cultured in vitro relative to the control group, but there were no significant differences between the other treatment groups. Immunocytochemical analysis confirmed that HSPA1A protein accumulation was gradually reduced in yak blastocysts cultured in 0, 10, 100 or 50 ng/mL CSF2, however, no significant differences were observed between the 10 and 100 ng/mL treatments (P > 0.05). In conclusion, these findings demonstrate that CSF2 inhibits the expression of HSPA1A to facilitate yak blastocyst formation and increase cell numbers.
Collapse
Affiliation(s)
- Zexing Wen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiumei Peng
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ping Chen
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guyue Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shujian Qin
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
44
|
Loren P, Cheuquemán C, Sánchez E, Risopatrón J, Arias ME, Felmer R, Sánchez R. Effect of short-term exposure of cumulus-oocyte complex to 3-morpholinosydnonimine on in vitro embryo development and gene expression in cattle. Reprod Domest Anim 2016; 51:1010-1019. [PMID: 27644683 DOI: 10.1111/rda.12788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
Abstract
Short-term exposure of gametes to different types of stress might induce stress tolerance in mammalian embryos. The aim of this study was to evaluate the effect of short-term exposure of bovine mature cumulus-oocyte complex (COC) to 3-morpholinosydnonimine (SIN-1) on subsequent in vitro embryo development, embryo quality and relative gene expression. Matured COCs were incubated with SIN-1 (0, 0.1, 1, 10 and 100 μM SIN-1) for 1 hr before in vitro fertilization and zygotes were cultured until Day 7. The cleavage rate at 72 hr did not show any differences among groups. However, the blastocyst rate on Day 7 decreased with all treatments evaluated, with the embryos generated with 10 μM SIN-1 showing the lowest embryo production rate. Embryo quality analysis did not show any differences in total cell number (TCN) or inner cell mass (ICM) among groups. Relative gene expression analysis showed a downregulation of eNOS expression and an upregulation of nNOS expression in all treatments evaluated compared to the control group. Also, a downregulation was observed in some treatments: SOD2 at 0.1 μM; SOD1 at 0.1 and 100 μM; PRDX5 at 0.1, 10 and 100 μM; and NANOG at 10 and 100 μM; and an upregulation of CDX2 expression was observed at 100 μM. The other genes (OCT4, HIF1A, HSPA1A, BCL2A and iNOS) did not show any differences in the relative gene expression. These results suggest that the short-term exposure of mature bovine COCs to SIN-1 does not induce stress tolerance and has no beneficial effect on bovine in vitro embryo production.
Collapse
Affiliation(s)
- P Loren
- Student of Doctoral Program in Sciences major in Applied Cellular and Molecular Biology, Universidad de la Frontera, Temuco, Chile.,Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - C Cheuquemán
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - E Sánchez
- Student of Doctoral Program in Sciences major in Applied Cellular and Molecular Biology, Universidad de la Frontera, Temuco, Chile.,Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - J Risopatrón
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Basic Science, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Agricultural and Livestock Production, Faculty of Farming, Livestock and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Agricultural and Livestock Production, Faculty of Farming, Livestock and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Sánchez
- Centre of Biotechnology on Reproduction (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
45
|
Zygote arrest 1, nucleoplasmin 2, and developmentally associated protein 3 mRNA profiles throughout porcine embryo development in vitro. Theriogenology 2016; 86:2254-2262. [PMID: 27566850 DOI: 10.1016/j.theriogenology.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 11/23/2022]
Abstract
Maternal effect genes (MEGs) are expressed in oocytes and embryos and play an important role in activation of the embryonic genome. An abnormality in the expression of these genes may lead to arrest of embryonic cleavage or to altered transcription of factors responsible for further embryonic development. In vitro-produced porcine embryos have a lower developmental potential than embryos produced in vivo. We hypothesized that in vitro embryo culture conditions have an effect on the expression of MEGs at various developmental stages, which may affect their developmental potential. Here, using real-time polymerase chain reaction, we examined mRNA profiles of the MEGs, zygote arrest 1 (ZAR-1), nucleoplasmin 2 (NPM2), and developmentally associated pluripotency protein 3 (DPPA3), in porcine oocytes and embryos produced in vitro and in vivo. Further, we evaluated the effect of the combined addition of EGF, interleukin 1β, and leukemia inhibitory factor to the porcine in vitro embryo production system on mRNA profiles of selected MEGs. Finally, we studied localization of the MEG protein products in in vitro-obtained oocytes and embryos using confocal microscopy. We found that the ZAR-1 mRNA profile differed throughout in vitro and in vivo embryo development. In the embryos produced in vitro, the decrease in ZAR-1 mRNA levels was observed at the 2-cell stage, whereas in in vivo embryos, ZAR-1 mRNA levels declined significantly starting at the 4-cell stage (P < 0.05). In vitro culture conditions affected transiently also DPPA3 mRNA levels at the 4-cell stage (P < 0.05). There was no difference in the NPM2 mRNA profile during in vitro and in vivo embryo development. The ZAR-1 and DPPA3 proteins were localized in the cytoplasm of the oocytes and embryos, whereas the NPM2 protein was found both in the cytoplasm and in the nucleus. All proteins were expressed until blastocyst stage. The addition of EGF and cytokines to the culture medium decreased DPPA3 mRNA levels in 8-cell embryos (P < 0.05). This study indicated that IVC conditions affect ZAR-1 mRNA levels before the 4-cell stage, which may disturb the activation of the embryonic genome in pigs. The expression of the proteins after the 4-cell to 8-cell transition indicates that these factors play a role beyond activation of the embryonic genome. Supplementation of the culture media with EGF and cytokines affects DPPA3 mRNA levels after maternal to embryonic transition.
Collapse
|
46
|
Epidermal growth factor enhances the developmental competence of yak (Bos grunniens) preimplantation embryos by modulating the expression of survivin and HSP70. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Schulte K, Ehmcke J, Schlatt S, Boiani M, Nordhoff V. Lower total cell numbers in mouse preimplantation embryos cultured in human assisted reproductive technique (ART) media are not induced by apoptosis. Theriogenology 2015; 84:1620-30. [DOI: 10.1016/j.theriogenology.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022]
|
48
|
Liu X, Hu T, Sun W, Hao H, Liu Y, Zhao X, Zhu H, Du W. Comparison of the developmental competence and quality of bovine embryos obtained by in vitro fertilization with sex-sorted and unsorted semen from seven bulls. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Cheuquemán C, Loren P, Arias M, Risopatrón J, Felmer R, Álvarez J, Mogas T, Sánchez R. Effects of short-term exposure of mature oocytes to sodium nitroprusside on in vitro embryo production and gene expression in bovine. Theriogenology 2015; 84:1431-7. [DOI: 10.1016/j.theriogenology.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/25/2015] [Accepted: 07/26/2015] [Indexed: 12/13/2022]
|
50
|
Sun WJ, Pang YW, Liu Y, Hao HS, Zhao XM, Qin T, Zhu HB, Du WH. Exogenous glutathione supplementation in culture medium improves the bovine embryo development after in vitro fertilization. Theriogenology 2015; 84:716-23. [DOI: 10.1016/j.theriogenology.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/21/2015] [Accepted: 05/03/2015] [Indexed: 11/28/2022]
|