1
|
Suvanasuthi R, Cheewasatheinchaiyaporn T, Wat-Aksorn K, Promptmas C. Nucleic Acid Amplification Free-QCM-DNA Biosensor for Burkholderia pseudomallei Detection. Curr Microbiol 2023; 80:376. [PMID: 37861919 DOI: 10.1007/s00284-023-03490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes the infectious disease melioidosis, a disease that can still be fatal despite appropriate treatment. The bacterium contains the gene clusters for the type III secretion system (TTSS), which are essential for its pathogenicity. This gene was often employed for accurate diagnosis through the laborious process of gene amplification. This work intends to develop a quartz crystal microbalance (QCM)-based TTSS gene detection method without gene amplification approaches to simplify the diagnosis process. In this study, it was demonstrated that a 540 bp sequence flanked by BglI restriction sites within the TTSS1 on the B. pseudomallei genome is an effective target for specific detection of the bacteria. After cultivation and genome extraction, the bacteria can be detected by digesting its genome with BglI in which the TTSS1 fragment is detected by a QCM-DNA biosensor, eliminating the need for nucleic acid amplification. A specific probe designed to bind to the TTSSI fragment was utilized as the receptor on the QCM-DNA biosensor which provided the ability to detect the fragment. The limit of detection of the QCM-DNA biosensor was 0.4 µM of the synthetic DNA target oligonucleotide. The system was also capable of specifically detecting the BglI digested-DNA fragment of B. pseudomallei species with significantly higher signal than B. thailandensis. This study provides evidence for an effective QCM-DNA biosensor that can identify B. pseudomallei without the need for nucleic acid amplification.
Collapse
Affiliation(s)
- Rooge Suvanasuthi
- Biosensor Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | | - Kesara Wat-Aksorn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Chamras Promptmas
- Biosensor Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand.
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
2
|
Bhalla N, Payam AF. Addressing the Silent Spread of Monkeypox Disease with Advanced Analytical Tools. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206633. [PMID: 36517107 DOI: 10.1002/smll.202206633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Monkeypox disease is caused by a virus which belongs to the orthopoxvirus genus of the poxviridae family. This disease has recently spread out to several non-endemic countries. While some cases have been linked to travel from endemic regions, more recent infections are thought to have spread in the community without any travel links, raising the risks of a wider outbreak. This state of public health represents a highly unusual event which requires urgent surveillance. In this context, the opportunities and technological challenges of current bio/chemical sensors, nanomaterials, nanomaterial characterization instruments, and artificially intelligent biosystems collectively called "advanced analytical tools" are reviewed here, which will allow early detection, characterization, and inhibition of the monkeypox virus (MPXV) in the community and limit its expansion from endemic to pandemic. A summary of background information is also provided from biological and epidemiological perspective of monkeypox to support the scientific case for its holistic management using advanced analytical tools.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
- Healthcare Technology Hub, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
| | - Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
- Healthcare Technology Hub, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
| |
Collapse
|
3
|
Min HJ, Mina HA, Deering AJ, Robinson JP, Bae E. Detection of Salmonella Typhimurium with Gold Nanoparticles Using Quartz Crystal Microbalance Biosensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:8928. [PMID: 36433525 PMCID: PMC9697148 DOI: 10.3390/s22228928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Demonstration of the Salmonella Typhimurium detection system was shown utilizing a quartz crystal microbalance (QCM) biosensor and signal enhancement by gold nanoparticles. In this study, a benchtop system of a QCM biosensor was utilized for the detection of Salmonella Typhimurium. It was designed with a peristaltic pump system to achieve immobilization of antibodies, detection of Salmonella, and the addition of gold nanoparticles to the sensor. As a series of biochemical solutions were introduced to the surface, the proposed system was able to track the changes in the resonant frequency which were proportional to the variations of mass on the sensor. For antibody immobilization, polyclonal antibodies were immobilized via self-assembled monolayers to detect Salmonella O-antigen. Subsequently, Salmonella Typhimurium was detected by antibodies and the average frequency before and after detecting Salmonella was compared. The highest frequency shifts were −26.91 Hz for 109 CFU/mL while the smallest frequency shift was −3.65 Hz corresponding to 103 CFU/mL. For the specificity tests, non-Salmonella samples such as E. coli, Listeria, and Staphylococcus resulted in low cross-reactivity. For signal amplification, biotinylated antibodies reacted to Salmonella followed by streptavidin—100 nm AuNPs through biotin-avidin interaction. The frequency shifts of 103 CFU/mL showed −28.04 Hz, and consequently improved the limit of detection.
Collapse
Affiliation(s)
- Hyun Jung Min
- Applied Optics Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hansel A. Mina
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Amanda J. Deering
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - J. Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Euiwon Bae
- Applied Optics Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Nair MP, Teo AJT, Li KHH. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications. MICROMACHINES 2021; 13:24. [PMID: 35056189 PMCID: PMC8779171 DOI: 10.3390/mi13010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave method is best suited for handling biological samples due to biocompatibility, label-free and non-invasive properties. In this review paper, we present a study on the use of acoustic waves generated by piezoelectric materials in the area of label-free biosensors and microfluidic actuation towards the realization of LOC and POC devices. The categorization of acoustic wave technology into the bulk acoustic wave and surface acoustic wave has been considered with the inclusion of biological sample sensing and manipulation applications. This paper presents an approach with a comprehensive study on the fundamental operating principles of acoustic waves in biosensing and microfluidic actuation, acoustic wave modes suitable for sensing and actuation, piezoelectric materials used for acoustic wave generation, fabrication methods, and challenges in the use of acoustic wave modes in biosensing. Recent developments in the past decade, in various sensing potentialities of acoustic waves in a myriad of applications, including sensing of proteins, disease biomarkers, DNA, pathogenic microorganisms, acoustofluidic manipulation, and the sorting of biological samples such as cells, have been given primary focus. An insight into the future perspectives of real-time, label-free, and portable LOC devices utilizing acoustic waves is also presented. The developments in the field of thin-film piezoelectric materials, with the possibility of integrating sensing and actuation on a single platform utilizing the reversible property of smart piezoelectric materials, provide a step forward in the realization of monolithic integrated LOC and POC devices. Finally, the present paper highlights the key benefits and challenges in terms of commercialization, in the field of acoustic wave-based biosensors and actuation platforms.
Collapse
Affiliation(s)
| | | | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (M.P.N.); (A.J.T.T.)
| |
Collapse
|
5
|
Pilevar M, Kim KT, Lee WH. Recent advances in biosensors for detecting viruses in water and wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124656. [PMID: 33308919 DOI: 10.1016/j.jhazmat.2020.124656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 05/09/2023]
Abstract
As there is a considerable number of virus particles in wastewater which cause numerous infectious diseases, it is necessary to eliminate viruses from domestic wastewater before it is released in the environment. In addition, on-site detection of viruses in wastewater can provide information on possible virus exposures in the community of a given wastewater catchment. For this purpose, the pre-detection of different strains of viruses in wastewaters is an essential environmental step. Epidemiological studies illustrate that viruses are the most challenging pathogens to be detected in water samples because of their nano sizes, discrete distribution, and low infective doses. Over the past decades, several methods have been applied for the detection of waterborne viruses which include polymerase chain reaction-based methods (PCR), enzyme-linked immunosorbent assay (ELISA), and nucleic acid sequence-based amplification (NASBA). Although they have shown acceptable performance in virus measurements, their drawbacks such as complicated and time-consuming procedures, low sensitivity, and high analytical cost call for alternatives. Although biosensors are still in an early stage for practical applications, they have shown great potential to become an alternative means for virus detection in water and wastewater. This comprehensive review addresses the different types of viruses found in water and the recent development of biosensors for detecting waterborne viruses.
Collapse
Affiliation(s)
- Mohsen Pilevar
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
6
|
Narita F, Wang Z, Kurita H, Li Z, Shi Y, Jia Y, Soutis C. A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID-19 and Other Viruses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005448. [PMID: 33230875 PMCID: PMC7744850 DOI: 10.1002/adma.202005448] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Indexed: 05/19/2023]
Abstract
The spread of the severe acute respiratory syndrome coronavirus has changed the lives of people around the world with a huge impact on economies and societies. The development of wearable sensors that can continuously monitor the environment for viruses may become an important research area. Here, the state of the art of research on biosensor materials for virus detection is reviewed. A general description of the principles for virus detection is included, along with a critique of the experimental work dedicated to various virus sensors, and a summary of their detection limitations. The piezoelectric sensors used for the detection of human papilloma, vaccinia, dengue, Ebola, influenza A, human immunodeficiency, and hepatitis B viruses are examined in the first section; then the second part deals with magnetostrictive sensors for the detection of bacterial spores, proteins, and classical swine fever. In addition, progress related to early detection of COVID-19 (coronavirus disease 2019) is discussed in the final section, where remaining challenges in the field are also identified. It is believed that this review will guide material researchers in their future work of developing smart biosensors, which can further improve detection sensitivity in monitoring currently known and future virus threats.
Collapse
Affiliation(s)
- Fumio Narita
- Department of Frontier Sciences for Advanced EnvironmentGraduate School of Environmental StudiesTohoku UniversityAoba‐yama 6‐6‐02Sendai980‐8579Japan
| | - Zhenjin Wang
- Department of Materials ProcessingGraduate School of EngineeringTohoku UniversityAoba‐yama 6‐6‐02Sendai980‐8579Japan
| | - Hiroki Kurita
- Department of Frontier Sciences for Advanced EnvironmentGraduate School of Environmental StudiesTohoku UniversityAoba‐yama 6‐6‐02Sendai980‐8579Japan
| | - Zhen Li
- College of Automation EngineeringNanjing University of Aeronautics and Astronautics29 Jiangjun AvenueNanjing211106China
| | - Yu Shi
- Department of Mechanical EngineeringUniversity of ChesterThornton Science Park, Pool LaneChesterCH2 4NUUK
| | - Yu Jia
- School of Engineering and Applied ScienceAston UniversityBirminghamB4 7ETUK
| | - Constantinos Soutis
- Aerospace Research InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
7
|
Galagedera SKK, Flechsig G. Voltammetric H/D Isotope Effects on Redox‐Active Small Molecules Conjugated with DNA Self‐Assembled Monolayers. ChemElectroChem 2019. [DOI: 10.1002/celc.201901151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sarasi K. K. Galagedera
- Department of ChemistryUniversity at Albany-SUNY 1400, Washington Avenue Albany NY 12222 U.S.A
| | - Gerd‐Uwe Flechsig
- Department of ChemistryUniversity at Albany-SUNY 1400, Washington Avenue Albany NY 12222 U.S.A
- Faculty of Applied Natural SciencesCoburg University of Applied Sciences and Arts Friedrich-Streib-Str. 2 96450 Coburg Germany
| |
Collapse
|
8
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
9
|
Peter J, Galagedera SK, Flechsig GU. Redox-Induced Switching of the Viscoelasticity of DNA Layers Observed by using Electrochemical Quartz Crystal Microbalance on the Millisecond Timescale. ChemElectroChem 2017. [DOI: 10.1002/celc.201701253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jörg Peter
- Department of Chemistry; University at Albany, SUNY; 1400 Washington Ave Albany NY 12222 U.S.A
| | - Sarasi K.K. Galagedera
- Department of Chemistry; University at Albany, SUNY; 1400 Washington Ave Albany NY 12222 U.S.A
| | - Gerd-Uwe Flechsig
- Department of Chemistry; University at Albany, SUNY; 1400 Washington Ave Albany NY 12222 U.S.A
| |
Collapse
|
10
|
Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5010007] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Rowland CE, Brown CW, Delehanty JB, Medintz IL. Nanomaterial-based sensors for the detection of biological threat agents. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2016; 19:464-477. [PMID: 32288600 PMCID: PMC7108310 DOI: 10.1016/j.mattod.2016.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The danger posed by biological threat agents and the limitations of modern detection methods to rapidly identify them underpins the need for continued development of novel sensors. The application of nanomaterials to this problem in recent years has proven especially advantageous. By capitalizing on large surface/volume ratios, dispersability, beneficial physical and chemical properties, and unique nanoscale interactions, nanomaterial-based biosensors are being developed with sensitivity and accuracy that are starting to surpass traditional biothreat detection methods, yet do so with reduced sample volume, preparation time, and assay cost. In this review, we start with an overview of bioagents and then highlight the breadth of nanoscale sensors that have recently emerged for their detection.
Collapse
Affiliation(s)
- Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- National Research Council, Washington, DC 20036, USA
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- College of Science, George Mason University, Fairfax, VA 22030, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
12
|
Jearanaikoon P, Prakrankamanant P, Leelayuwat C, Wanram S, Limpaiboon T, Promptmas C. The evaluation of loop-mediated isothermal amplification-quartz crystal microbalance (LAMP-QCM) biosensor as a real-time measurement of HPV16 DNA. J Virol Methods 2016; 229:8-11. [DOI: 10.1016/j.jviromet.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022]
|
13
|
Biosensors for waterborne viruses: Detection and removal. Biochimie 2015; 115:144-54. [DOI: 10.1016/j.biochi.2015.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/14/2015] [Indexed: 01/20/2023]
|
14
|
Park S, Kim J, Ock H, Dutta G, Seo J, Shin EC, Yang H. Sensitive electrochemical detection of vaccinia virus in a solution containing a high concentration of l-ascorbic acid. Analyst 2015; 140:5481-7. [DOI: 10.1039/c5an01086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new redox cycling scheme allows sensitive detection of vaccinia virus in a solution containing a high concentration of l-ascorbic acid.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Jihye Kim
- Graduate School of Medical Science & Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Korea
| | - Hwiseok Ock
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Gorachand Dutta
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Jeongwook Seo
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science & Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| |
Collapse
|
15
|
Malecka K, Michalczuk L, Radecka H, Radecki J. Ion-channel genosensor for the detection of specific DNA sequences derived from Plum Pox Virus in plant extracts. SENSORS 2014; 14:18611-24. [PMID: 25302809 PMCID: PMC4239951 DOI: 10.3390/s141018611] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3-/4- as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1-8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10-50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Lech Michalczuk
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
16
|
Riedel M, Kartchemnik J, Schöning MJ, Lisdat F. Impedimetric DNA Detection—Steps Forward to Sensorial Application. Anal Chem 2014; 86:7867-74. [DOI: 10.1021/ac501800q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marc Riedel
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Julia Kartchemnik
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Michael J. Schöning
- Institute
of Nano- and Biotechnologies, University of Applied Sciences Aachen, Heinrich-Mußmann-Strasse 1, 52428 Jülich, Germany
| | - Fred Lisdat
- Biosystems
Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| |
Collapse
|
17
|
Thavanathan J, Huang NM, Thong KL. Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide. Biosens Bioelectron 2014; 55:91-8. [DOI: 10.1016/j.bios.2013.11.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/24/2013] [Accepted: 11/28/2013] [Indexed: 12/19/2022]
|
18
|
Guo Y, Guo Y, Dong C. Ultrasensitive and label-free electrochemical DNA biosensor based on water-soluble electroactive dye azophloxine-functionalized graphene nanosheets. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1018-26. [DOI: 10.1016/j.nano.2013.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 01/28/2023]
|
20
|
The development of DNA-based quartz crystal microbalance integrated with isothermal DNA amplification system for human papillomavirus type 58 detection. Biosens Bioelectron 2013; 40:252-7. [DOI: 10.1016/j.bios.2012.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/29/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022]
|
21
|
Wu NY, Gao W, He XL, Chang Z, Xu MT. Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry. Biosens Bioelectron 2013; 39:210-4. [DOI: 10.1016/j.bios.2012.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/16/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
|
22
|
Jia K, Toury T, Ionescu RE. Fabrication of an atrazine acoustic immunosensor based on a drop-deposition procedure. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:2015-2021. [PMID: 23007775 DOI: 10.1109/tuffc.2012.2421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Among the various novel analytical systems, immunosensors based on acoustic waves are of emerging interest because of their good sensitivity, real-time monitoring capability, and experimental simplicity. In this work, piezoelectric immunosensors were constructed for the detection of atrazine through the immobilization of specific monoclonal anti-atrazine antibodies on thiolated modified quartz crystal microbalances (QCMs). The immunoassay was conducted by a novel drop-deposition procedure using different atrazine dilutions in phosphate buffer solution ranging from 10(-10) to 10(-1) mg/mL. The immunoreactions between varying contents of atrazine and its antibody were dynamically exhibited through in situ monitoring of the frequency and motional resistance changes over 20 min. Thus, atrazine recognition by the anti-atrazine antibody leads to a decrease of the resonant frequency that is proportional to a given atrazine concentration. Interestingly, the motional resistance also increased proportionally during the measurements, which could be attributed to the specific viscoelastic properties and/or conformation changes of the antibodies once the immunoreactions occurred. By combining the measurements of frequency with those of motional resistance, additional information was provided about the interaction between the atrazine-named antigen and its respective antibody. Finally, the analytical specificity of the immunosensor to atrazine was evaluated through the response to a nonspecific anti-human IgG antibody-modified QCM crystal under the same drop conditions.
Collapse
Affiliation(s)
- Kun Jia
- Laboratoire de Nanotechnologies et d’Instrumentation Optique, Université de Technologie de Troyes, Troyes, France
| | | | | |
Collapse
|
23
|
|