1
|
Anufrieva NV, Morozova EA, Revtovich SV, Bazhulina NP, Timofeev V, Tkachev YV, Faleev N, Nikulin AD, Demidkina TV. Serine 339 in the Catalysis of γ- and β-Elimination Reactions. Acta Naturae 2022; 14:50-61. [PMID: 35923564 PMCID: PMC9307983 DOI: 10.32607/actanaturae.11242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Serine 339 of the active site of Citrobacter freundii
methionine γ-lyase (MGL) is a conserved amino acid in most
pyridoxal 5’-phosphate-dependent enzymes of the cystathionine
β-lyase subclass, to which MGL belongs. The reaction mechanism of the
MGL-catalyzed γ-elimination reaction is poorly explored. We replaced
serine 339 with alanine using site-directed mutagenesis. The replacement of
serine 339 with alanine led to a significant (by two orders of magnitude)
decrease in efficiency in the catalysis of the γ- and β-elimination
reactions by the mutant form of the enzyme. The exchange rates of the C-α-
and C-β-protons in the amino acids in complexes consisting of the enzyme
and competitive inhibitors decreased by one-two orders of magnitude. The
spectral characteristics of the mutant form indicated that the replacement did
not lead to significant changes in the conformation and tautomerism of MGL
internal aldimine. We crystallized the holoenzyme and determined its spatial
structure at 1.7 E resolution. The replacement of serine 339 with alanine did
not affect the overall course of the polypeptide chain of the MGL subunit and
the tetrameric enzyme structure. An analysis of the obtained kinetic and
spectral data, as well as the known spatial structures of C. freundii
MGL, indicates that serine 339 is necessary for efficient catalysis of
γ- and β-elimination reactions at the stage of C-α-proton
abstraction from the external aldimine, the γ-elimination reaction at the
stages of coenzyme C4’-atom protonation, and C-β-proton abstraction
from a ketimine intermediate.
Collapse
Affiliation(s)
- N. V. Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. A. Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - S. V. Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - N. P. Bazhulina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - V.P. Timofeev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - Ya. V. Tkachev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - N.G. Faleev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - A. D. Nikulin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - T. V. Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
2
|
Kuznetsova AA, Faleev NG, Morozova EA, Anufrieva NV, Gogoleva OI, Tsvetikova MA, Fedorova OS, Demidkina TV, Kuznetsov NA. Analyses of pre-steady-state kinetics and isotope effects of the γ-elimination reaction catalyzed by Citrobacter freundii methionine γ-lyase. Biochimie 2022; 201:157-167. [PMID: 35691533 DOI: 10.1016/j.biochi.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme catalyzing γ-elimination in l-methionine. Pyridoxal 5'-phosphate-dependent enzymes have unique spectral properties that allow to monitor sequential formation and decomposition of various intermediates via the detection of absorbance changes. The kinetic mechanism of the γ-elimination reaction catalyzed by Citrobacter freundii MGL was elucidated here by fast stopped-flow kinetic analysis. Single-wavelength detection of characteristic absorbance changes enabled us to compare transformations of intermediates in the course of the reaction with different substrates. The influence of various γ-substituents in the substrate on the formation of key intermediates was estimated. Kinetic isotope effects of α- and β-protons were determined using deuterium-substituted l-methionine. Contributions of amino acid residues Tyr113 and Tyr58 located in the active site on the formation and decomposition of reaction intermediates were identified too. α-Aminocrotonate formation is the rate-limiting step of the enzymatic γ-elimination reaction. Kinetic isotope effects strongly support concerted reaction mechanisms of transformation between an external aldimine and a ketimine intermediate as well as a ketimine intermediate and an unsaturated ketimine.
Collapse
Affiliation(s)
- Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nicolai G Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga I Gogoleva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Marina A Tsvetikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
3
|
Tamzil MS, Alfiko Y, Mubarok AF, Purwantomo S, Suwanto A, Budiarti S. Development of Auxotrophic Agrobacterium tumefaciens AGL1 by Tn5 Transposon for Rice (Oryza sativa L.) Transformation. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0244-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Ujiie Y, Tanaka W, Hanaoka K, Harada R, Kayanuma M, Shoji M, Murakawa T, Ishida T, Shigeta Y, Hayashi H. Molecular Mechanism of the Reaction Specificity in Threonine Synthase: Importance of the Substrate Conformations. J Phys Chem B 2017; 121:5536-5543. [PMID: 28489381 DOI: 10.1021/acs.jpcb.7b02932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Threonine synthase (ThrS) catalyzes the final chemical reaction of l-threonine biosynthesis from its precursor, O-phospho-l-homoserine. As the phosphate ion generated in its former half reaction assists its latter reaction, ThrS is recognized as one of the best examples of product-assisted catalysis. In our previous QM/MM study, the chemical reactions for the latter half reactions, which are critical for the product-assisted catalysis, were revealed. However, accurate free energy changes caused by the conformational ensembles and entrance of water molecules into the active site are unknown. In the present study, by performing long-time scale MD simulations, the free energy changes by the divalent anions (phosphate or sulfate ions) and conformational states of the intermediate states were theoretically investigated. We found that the calculated free energy double differences are in good agreement with the experimental results. We also revealed that the phosphate ion contributes to forming hydrogen bonds that are suitable for the main reaction progress. This means that the conformation of the active site amino acid residues and the substrate, and hence, the tunable catalysis, are controlled by the product phosphate ion, and this clearly demonstrates a molecular mechanism of the product-assisted catalysis in ThrS.
Collapse
Affiliation(s)
- Yuzuru Ujiie
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
| | - Wataru Tanaka
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
| | - Kyohei Hanaoka
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Megumi Kayanuma
- Center for Computational Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuo Shoji
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.,Center for Computational Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Osaka Medical College , Takatsuki 569-8686, Japan
| | - Toyokazu Ishida
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Yasuteru Shigeta
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.,Center for Computational Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideyuki Hayashi
- Department of Chemistry, Osaka Medical College , Takatsuki 569-8686, Japan
| |
Collapse
|
5
|
Terai T, Ito H, Hanaoka K, Komatsu T, Ueno T, Nagano T, Urano Y. Detection of NAD(P)H-dependent enzyme activity by time-domain ratiometry of terbium luminescence. Bioorg Med Chem Lett 2016; 26:2314-7. [PMID: 27013390 DOI: 10.1016/j.bmcl.2016.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
NAD(P)H-dependent oxidoreductases play important roles in biology. Recently, we reported that the luminescence lifetime of some Tb(3+) complexes is sensitive to NAD(P)H, and we used this phenomenon to detect activities of these enzymes. However, conventional time-resolved luminescence assays are susceptible to static quenchers such as ATP. Herein we describe a detection methodology that overcomes this issue: the intensity of the sample is measured twice with different delay times and the intensity ratio value is used as an index of NAD(P)H concentration. The method is more robust than single-point measurement, and is compatible with high-throughput assays using conventional microplate readers.
Collapse
Affiliation(s)
- Takuya Terai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Hiroki Ito
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST PRESTO, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
6
|
Anufrieva NV, Faleev NG, Morozova EA, Bazhulina NP, Revtovich SV, Timofeev VP, Tkachev YV, Nikulin AD, Demidkina TV. The role of active site tyrosine 58 in Citrobacter freundii methionine γ-lyase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1220-8. [PMID: 25584856 DOI: 10.1016/j.bbapap.2014.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and β-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-β- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and β-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Nicolai G Faleev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 117813, Russia
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Natalia P Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Vladimir P Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Yaroslav V Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia
| | - Alexei D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, ul. Institutskaya 4, Pushchino, Moscow Region 142290, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russia.
| |
Collapse
|
7
|
A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:465-72. [PMID: 24291053 DOI: 10.1016/j.bbapap.2013.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/17/2013] [Accepted: 11/21/2013] [Indexed: 11/21/2022]
Abstract
Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4-1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine β-lyase. The effect of substituting E48, E333 or both residues is the 1.3-3, 26-58 and 124-568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Km(l-Cth) of E333 substitution variants is increased ~17-fold, while Km(l-OAS) is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Km(l-OSHS)=7±2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Km(l-Cth)=2100±100) and 260-fold higher than that of l-Hcys (kcat/Km(l-Hcys)=0.027±0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity.
Collapse
|
8
|
Synthesis and biological evaluation of potential threonine synthase inhibitors: Rhizocticin A and Plumbemycin A. Bioorg Med Chem 2013; 21:4958-67. [DOI: 10.1016/j.bmc.2013.06.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022]
|
9
|
Exploration of structure–function relationships in Escherichia coli cystathionine γ-synthase and cystathionine β-lyase via chimeric constructs and site-specific substitutions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1044-53. [DOI: 10.1016/j.bbapap.2013.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/23/2022]
|
10
|
Jaworski AF, Lodha PH, Manders AL, Aitken SM. Exploration of the active site of Escherichia coli cystathionine γ-synthase. Protein Sci 2013; 21:1662-71. [PMID: 22855027 DOI: 10.1002/pro.2135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cystathionine γ-synthase (CGS) catalyzes the condensation of O-succinyl-L-homoserine (L-OSHS) and L-cysteine (L-Cys), to produce L-cystathionine (L-Cth) and succinate, in the first step of the bacterial transsulfuration pathway. In the absence of L-Cys, the enzyme catalyzes the futile α,γ-elimination of L-OSHS, yielding succinate, α-ketobutyrate, and ammonia. A series of 16 site-directed variants of Escherichia coli CGS (eCGS) was constructed to probe the roles of active-site residues D45, Y46, R48, R49, Y101, R106, N227, E325, S326, and R361. The effects of these substitutions on the catalytic efficiency of the α,γ-elimination reaction range from a reduction of only ∼2-fold for R49K and the E325A,Q variants to 310- and 760-fold for R361K and R48K, respectively. A similar trend is observed for the k(cat) /K(m)(l-OSHS) of the physiological, α,γ-replacement reaction. The results of this study suggest that the arginine residues at positions 48, 106 and 361 of eCGS, conserved in bacterial CGS sequences, tether the distal and α-carboxylate moieties, respectively, of the L-OSHS substrate. In contrast, with the exception of the 13-fold increase observed for R106A, the K(m)(l-Cys) is not markedly affected by the site-directed replacement of the residues investigated. The decrease in k(cat) observed for the S326A variant reflects the role of this residue in tethering the side chain of K198, the catalytic base. Although no structures exist of eCGS bound to active-site ligands, the roles of individual residues is consistent with the structures inhibitor complexes of related enzymes. Substitution of D45, E325, or Y101 enables a minor transamination activity for the substrate L-Ala.
Collapse
|