1
|
Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics 2022; 14:pharmaceutics14061154. [PMID: 35745727 PMCID: PMC9227432 DOI: 10.3390/pharmaceutics14061154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Silica nanoparticles hold tremendous potential for the encapsulation of enzymes. However, aqueous alcohol solutions and catalysts are prerequisites for the production of silica nanoparticles, which are too harsh for maintaining the enzyme activity. Herein, a procedure without any organic solvents and catalysts (acidic or alkaline) is developed for the synthesis of silica-encapsulated glucose-oxidase-coated magnetic nanoparticles by a facile self-assembly route, avoiding damage of the enzyme structure in the reaction system. The encapsulated enzyme was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, and a vibrating sample magnetometer. Finally, a colorimetric sensing method was developed for the detection of glucose in urine samples based on the encapsulated glucose oxidase and a hydrogen peroxide test strip. The method exhibited a good linear performance in the concentration range of 20~160 μg mL−1 and good recoveries ranging from 94.3 to 118.0%. This work proves that the self-assembly method could be employed to encapsulate glucose oxidase into silica-coated magnetic particles. The developed colorimetric sensing method shows high sensitivity, which will provide a promising tool for the detection of glucose and the monitoring of diabetes.
Collapse
|
2
|
Low-Denaturazing Glucose Oxidase Immobilization onto Graphite Electrodes by Incubation in Chitosan Solutions. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, glucose oxidase (GOx) has been immobilized onto graphite rod electrodes through an assisted-chitosan adsorption reaching an enzyme coverage of 4 nmol/cm2. The direct and irreversible single adsorption of the Flavine Adenine Dinucleotide (FAD) cofactor has been minimized by electrode incubation in a chitosan (CH) solution containing the enzyme GOx. Chitosan keeps the enzyme structure and conformation due to electrostatic interactions preventing FAD dissociation from the protein envelope. Using chitosan, both the redox cofactor FAD and the protein envelope remain in the active form as demonstrated by the electrochemistry studies and the enzymatic activity in the electrochemical oxidation of glucose up to a concentration of 20 mM. The application of the modified electrodes for energy harvesting delivered a power density of 119 µW/cm2 with a cell voltage of 0.3 V. Thus, chitosan presents a stabilizing effect for the enzyme conformation promoted by the confinement effect in the chitosan solution by electrostatic interactions. Additionally, it facilitated the electron transfer from the enzyme to the electrode due to the presence of embedded chitosan in the enzyme structure acting as an electrical wiring between the electrode and the enzyme (electron transfer rate constant 2.2 s−1). This method involves advantages compared with previously reported chitosan immobilization methods, not only due to good stability of the enzyme, but also to the simplicity of the procedure that can be carried out even for not qualified technicians which enable their easy implementation in industry.
Collapse
|
3
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
4
|
Development of PAMAM dendrimer-modified magnetic chitosan: a novel platform for α-amylase immobilization. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Design, Fundamental Principles of Fabrication and Applications of Microreactors. Processes (Basel) 2020. [DOI: 10.3390/pr8080891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study highlights the development of small-scale reactors, in the form of microstructures with microchannel networking. Microreactors have achieved an impressive reputation, regarding chemical synthesis ability and their applications in the engineering, pharmaceutical, and biological fields. This review elaborates on the fabrication, construction, and schematic fundamentals in the design of the microreactors and microchannels. The materials used in the fabrication or construction of the microreactors include silicon, polymer, and glass. A general review of the application of microreactors in medical, biological, and engineering fields is carried out and significant improvements in these areas are reported. Finally, we highlight the flow patterns, mixing, and scaling-up of multiphase microreactor developments, with emphasis on the more significant industrial applications.
Collapse
|
6
|
Immobilized Enzyme Reactors: an Overview of Applications in Drug Discovery from 2008 to 2018. Chromatographia 2018. [DOI: 10.1007/s10337-018-3663-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Gattu S, Crihfield CL, Lu G, Bwanali L, Veltri LM, Holland LA. Advances in enzyme substrate analysis with capillary electrophoresis. Methods 2018; 146:93-106. [PMID: 29499329 PMCID: PMC6098732 DOI: 10.1016/j.ymeth.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Capillary electrophoresis provides a rapid, cost-effective platform for enzyme and substrate characterization. The high resolution achievable by capillary electrophoresis enables the analysis of substrates and products that are indistinguishable by spectroscopic techniques alone, while the small volume requirement enables analysis of enzymes or substrates in limited supply. Furthermore, the compatibility of capillary electrophoresis with various detectors makes it suitable for KM determinations ranging from nanomolar to millimolar concentrations. Capillary electrophoresis fundamentals are discussed with an emphasis on the separation mechanisms relevant to evaluate sets of substrate and product that are charged, neutral, and even chiral. The basic principles of Michaelis-Menten determinations are reviewed and the process of translating capillary electrophoresis electropherograms into a Michaelis-Menten curve is outlined. The conditions that must be optimized in order to couple off-line and on-line enzyme reactions with capillary electrophoresis separations, such as incubation time, buffer pH and ionic strength, and temperature, are examined to provide insight into how the techniques can be best utilized. The application of capillary electrophoresis to quantify enzyme inhibition, in the form of KI or IC50 is detailed. The concept and implementation of the immobilized enzyme reactor is described as a means to increase enzyme stability and reusability, as well as a powerful tool for screening enzyme substrates and inhibitors. Emerging techniques focused on applying capillary electrophoresis as a rapid assay to obtain structural identification or sequence information about a substrate and in-line digestions of peptides and proteins coupled to mass spectrometry analyses are highlighted.
Collapse
Affiliation(s)
- Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Cassandra L Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lindsay M Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
8
|
Schejbal J, Glatz Z. Immobilized-enzyme reactors integrated with capillary electrophoresis for pharmaceutical research. J Sep Sci 2017; 41:323-335. [DOI: 10.1002/jssc.201700905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Schejbal
- Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
| |
Collapse
|
9
|
Ma H, Bai Y, Li J, Chang YX. Screening bioactive compounds from natural product and its preparations using capillary electrophoresis. Electrophoresis 2017; 39:260-274. [DOI: 10.1002/elps.201700239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Yun Bai
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yan-xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| |
Collapse
|
10
|
Kazan A, Heymuth M, Karabulut D, Akay S, Yildiz-Ozturk E, Onbas R, Muderrisoglu C, Sargin S, Heils R, Smirnova I, Yesil-Celiktas O. Formulation of organic and inorganic hydrogel matrices for immobilization of β-glucosidase in microfluidic platform. Eng Life Sci 2017; 17:714-722. [PMID: 32624816 DOI: 10.1002/elsc.201600218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to formulate silica and alginate hydrogels for immobilization of β-glucosidase. For this purpose, enzyme kinetics in hydrogels were determined, activity of immobilized enzymes was compared with that of free enzyme, and structures of silica and alginate hydrogels were characterized in terms of surface area and pore size. The addition of polyethylene oxide improved the mechanical strength of the silica gels and 68% of the initial activity of the enzyme was preserved after immobilizing into tetraethyl orthosilicate-polyethylene oxide matrix where the relative activity in alginate beads was 87%. The immobilized β-glucosidase was loaded into glass-silicon-glass microreactors and catalysis of 4-nitrophenyl β-d-glucopyranoside was carried out at various retention times (5, 10, and 15 min) to compare the performance of silica and alginate hydrogels as immobilization matrices. The results indicated that alginate hydrogels exhibited slightly better properties than silica, which can be utilized for biocatalysis in microfluidic platforms.
Collapse
Affiliation(s)
- Aslihan Kazan
- Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| | - Marcel Heymuth
- Institute of Thermal Separation Processes Hamburg University of Technology Hamburg Germany
| | - Dilan Karabulut
- Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| | - Seref Akay
- Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| | - Ece Yildiz-Ozturk
- Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| | - Rabia Onbas
- Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| | - Cahit Muderrisoglu
- Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| | - Sayit Sargin
- Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| | - Rene Heils
- Institute of Thermal Separation Processes Hamburg University of Technology Hamburg Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes Hamburg University of Technology Hamburg Germany
| | | |
Collapse
|
11
|
Ouimet CM, D’Amico CI, Kennedy RT. Advances in capillary electrophoresis and the implications for drug discovery. Expert Opin Drug Discov 2017; 12:213-224. [PMID: 27911223 PMCID: PMC5521262 DOI: 10.1080/17460441.2017.1268121] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Many screening platforms are prone to assay interferences that can be avoided by directly measuring the target or enzymatic product. Capillary electrophoresis (CE) and microchip electrophoresis (MCE) have been applied in a variety of formats to drug discovery. CE provides direct detection of the product allowing for the identification of some forms of assay interference. The high efficiency, rapid separations, and low volume requirements make CE amenable to drug discovery. Areas covered: This article describes advances in capillary electrophoresis throughput, sample introduction, and target assays as they pertain to drug discovery and screening. Instrumental advances discussed include integrated droplet microfluidics platforms and multiplexed arrays. Applications of CE to assays of diverse drug discovery targets, including enzymes and affinity interactions are also described. Expert opinion: Current screening with CE does not fully take advantage of the throughputs or low sample volumes possible with CE and is most suitable as a secondary screening method or for screens that are inaccessible with more common platforms. With further development, droplet microfluidics coupled to MCE could take advantage of the low sample requirements by performing assays on the nanoliter scale at high throughput.
Collapse
Affiliation(s)
- Claire M. Ouimet
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, United States
| | - Cara I. D’Amico
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, United States
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, United States
| |
Collapse
|
12
|
Wu YH, Chu L, Liu W, Jiang L, Chen XY, Wang YH, Zhao YL. The screening of metal ion inhibitors for glucose oxidase based on the peroxidase-like activity of nano-Fe3O4. RSC Adv 2017. [DOI: 10.1039/c7ra07081k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a colorimetric method is proposed based on the peroxidase-like activity of Fe3O4magnetic nanoparticles for screening metal ion inhibitors for glucose oxidase activity.
Collapse
Affiliation(s)
- Yao-hui Wu
- Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province
- College of Life Science and Technology
- Forestry Biotechnology Hunan Key Laboratories
- Central South University of Forestry and Technology
- Changsha
| | - Lei Chu
- Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province
- College of Life Science and Technology
- Forestry Biotechnology Hunan Key Laboratories
- Central South University of Forestry and Technology
- Changsha
| | - Wen Liu
- Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province
- College of Life Science and Technology
- Forestry Biotechnology Hunan Key Laboratories
- Central South University of Forestry and Technology
- Changsha
| | - Lun Jiang
- Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province
- College of Life Science and Technology
- Forestry Biotechnology Hunan Key Laboratories
- Central South University of Forestry and Technology
- Changsha
| | - Xiao-yong Chen
- Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province
- College of Life Science and Technology
- Forestry Biotechnology Hunan Key Laboratories
- Central South University of Forestry and Technology
- Changsha
| | - Yong-hong Wang
- Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province
- College of Life Science and Technology
- Forestry Biotechnology Hunan Key Laboratories
- Central South University of Forestry and Technology
- Changsha
| | - Yun-lin Zhao
- Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province
- College of Life Science and Technology
- Forestry Biotechnology Hunan Key Laboratories
- Central South University of Forestry and Technology
- Changsha
| |
Collapse
|
13
|
Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T. Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 2016. [DOI: 10.1039/c5cs00447k] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an exhaustive overview of the engineering principles, safety aspects and chemistry associated with liquid phase oxidation in continuous-flow microreactors.
Collapse
Affiliation(s)
- Hannes P. L. Gemoets
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Yuanhai Su
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Minjing Shang
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- E14014 Cordoba
- Spain
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry & Process Technology
- Eindhoven University of Technology
- 5612 AZ Eindhoven
- The Netherlands
| |
Collapse
|
14
|
Kugimiya A, Konishi H, Fukada R. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay. Appl Biochem Biotechnol 2015; 178:924-31. [PMID: 26554858 DOI: 10.1007/s12010-015-1918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022]
Abstract
Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0).
Collapse
Affiliation(s)
- Akimitsu Kugimiya
- Center for Industry and Public Relations, Hiroshima City University, 3-8-24 Senda-machi, Naka-ku, Hiroshima, 730-0052, Japan.
| | - Hidenori Konishi
- Center for Industry and Public Relations, Hiroshima City University, 3-8-24 Senda-machi, Naka-ku, Hiroshima, 730-0052, Japan
| | - Rie Fukada
- Center for Industry and Public Relations, Hiroshima City University, 3-8-24 Senda-machi, Naka-ku, Hiroshima, 730-0052, Japan
| |
Collapse
|
15
|
|
16
|
LIU DM, SHI YP, CHEN J. Application of Capillary Electrophoresis in Enzyme Inhibitors Screening. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60826-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 990:174-80. [DOI: 10.1016/j.jchromb.2015.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
|
18
|
Liu DM, Chen J, Shi YP. An online immobilized α-glucosidase microreactor for enzyme kinetics and inhibition assays. RSC Adv 2015. [DOI: 10.1039/c5ra07982a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A novel online α-glucosidase-immobilized microreactor was developed by immobilizing α-glucosidase on capillary inner wall. The microreactor combination with capillary electrophoresis was applied in studying enzyme kinetics and inhibition kinetics.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources
- Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Juan Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources
- Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Yan-Ping Shi
- Key Laboratory of Chemistry of Northwestern Plant Resources
- Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
19
|
Capillary electrophoresis-based immobilized enzyme reactor using particle-packing technique. J Chromatogr A 2014; 1352:80-6. [DOI: 10.1016/j.chroma.2014.05.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/26/2023]
|
20
|
Illner S, Hofmann C, Löb P, Kragl U. A Falling-Film Microreactor for Enzymatic Oxidation of Glucose. ChemCatChem 2014. [DOI: 10.1002/cctc.201400028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Lee SY, Müller CE. Large-volume sample stacking with polarity switching for monitoring of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) reactions by capillary electrophoresis. Electrophoresis 2014; 35:855-63. [PMID: 24431193 DOI: 10.1002/elps.201300453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 12/26/2022]
Abstract
Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its main substrate is ATP yielding AMP and pyrophosphate. NPP1 has been proposed as a novel drug target, for diabetes type 2 and the treatment of calcium pyrophosphate dihydrate deposition disease leading to inflammatory arthritis. The monitoring of NPP1 reactions is difficult because its velocity is very slow requiring highly sensitive analytical procedures. In this study, a method of large-volume sample stacking with polarity switching was developed, and separations were optimized. Large sample volumes were loaded by hydrodynamic injection (5 psi, 13 s) followed by removal of a large plug of sample matrix from the capillary using polarity switching (-10 kV). The stacked analytes were subsequently separated in phosphate buffer (100 mM, pH 9.2) at 20 kV. The validated method was found to be linear (R(2) = 0.9927) in the concentration range of 0.05-50 μM of AMP, with high accuracy and precision. The determined LOD and LOQ of AMP were 18 nM and 60 nM, respectively. Compared to a previously reported CE procedure using sweeping technique, a fivefold improvement of sensitivity was achieved. Moreover, the new technique was faster, and reproducibility of migration times was improved (RSD value = 1.2%). Importantly, adenine nucleotide analogs and derivatives tested as NPP1 inhibitors could be completely separated from the substrate ATP and the enzymatic product AMP. The method was applied to NPP1 inhibition assays investigating nucleotide-derived inhibitors in the presence of ATP.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | | |
Collapse
|
22
|
Wang J, Gu SS, Cui HS, Yang LQ, Wu XY. Rapid synthesis of propyl caffeate in ionic liquid using a packed bed enzyme microreactor under continuous-flow conditions. BIORESOURCE TECHNOLOGY 2013; 149:367-374. [PMID: 24128399 DOI: 10.1016/j.biortech.2013.09.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 06/02/2023]
Abstract
Propyl caffeate has the highest antioxidant activity among caffeic acid alkyl esters, but its industrial production via enzymatic transesterification in batch reactors is hindered by a long reaction time (24h). To develop a rapid process for the production of propyl caffeate in high yield, a continuous-flow microreactor composed of a two-piece PDMS in a sandwich-like microchannel structure was designed for the transesterification of methyl caffeate and 1-propanol catalyzed by Novozym 435 in [B mim][CF3SO3]. The maximum yield (99.5%) in the microreactor was achieved in a short period of time (2.5h) with a flow rate of 2 μL/min, which kinetic constant Km was 16 times lower than that of a batch reactor. The results indicated that the use of a continuous-flow packed bed enzyme microreactor is an efficient method of producing propyl caffeate with an overall yield of 84.0%.
Collapse
Affiliation(s)
- Jun Wang
- School of the Environment, Jiangsu University, Zhenjiang 212013, PR China; School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China.
| | | | | | | | | |
Collapse
|
23
|
Wang X, Li K, Adams E, Schepdael AV. Recent advances in CE-mediated microanalysis for enzyme study. Electrophoresis 2013; 35:119-27. [PMID: 24170447 DOI: 10.1002/elps.201300294] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/13/2022]
Abstract
This review gives an overview of the recent developments and applications in the use of CE-mediated microanalysis for enzyme studies. The period covers mid-2011 until mid-2013. Both off-line and in-line enzyme assays with their applications using CE are described in this article. For the in-capillary enzyme reaction, the techniques using electrophoretically mediated microanalysis (EMMA) as well as immobilized enzyme reactor (IMER) are discussed. The applications include the evaluation of enzyme activity, enzyme kinetics, enzyme inhibition, screening of enzyme inhibitors, and the study of enzyme-mediated drug metabolism.
Collapse
Affiliation(s)
- Xu Wang
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium; School of Medicine, University of California, San Diego, CA, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
Su P, Wang S, Shi Y, Yang Y. Application of cellulase-polyamidoamine dendrimer-modified silica for microwave-assisted chitosan enzymolysis. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang S, Su P, Huang J, Wu J, Yang Y. Magnetic nanoparticles coated with immobilized alkaline phosphatase for enzymolysis and enzyme inhibition assays. J Mater Chem B 2013; 1:1749-1754. [DOI: 10.1039/c3tb00562c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Iqbal J, Iqbal S, Müller CE. Advances in immobilized enzyme microbioreactors in capillary electrophoresis. Analyst 2013; 138:3104-16. [DOI: 10.1039/c3an00031a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|