1
|
Rossmann C, Ranz C, Kager G, Ledinski G, Koestenberger M, Wonisch W, Wagner T, Schwaminger SP, Di Geronimo B, Hrzenjak A, Hallstöm S, Reibnegger G, Cvirn G, Paar M. Metformin Impedes Oxidation of LDL In Vitro. Pharmaceutics 2023; 15:2111. [PMID: 37631325 PMCID: PMC10459002 DOI: 10.3390/pharmaceutics15082111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin is the most commonly prescribed glucose-lowering drug for the treatment of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and atherosclerosis. LDL was oxidized by addition of CuCl2 in the presence of increasing concentrations of metformin. The extent of LDL oxidation was assessed by measuring lipid hydroperoxide and malondialdehyde concentrations, relative electrophoretic mobilities, and oxidation-specific immune epitopes. Cytotoxicity of oxLDL in the vascular endothelial cell line EA.hy926 was assessed using the alamarBlue viability test. Quantum chemical calculations were performed to determine free energies of reactions between metformin and radicals typical for lipid oxidation. Metformin concentration-dependently impeded the formation of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes when oxidation of LDL was initiated by addition of Cu2+. The cytotoxicity of oxLDL was reduced when it was obtained under increasing concentrations of metformin. The quantum chemical calculations revealed that only the reaction of metformin with hydroxyl radicals is exergonic, whereas the reactions with hydroperoxyl radicals or superoxide radical anions are endergonic. Metformin, beside its glucose-lowering effect, might be a suitable agent to impede the development of atherosclerosis and associated CVD. This is due to its capability to impede LDL oxidation, most likely by scavenging hydroxyl radicals.
Collapse
Affiliation(s)
- Christine Rossmann
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Cornelia Ranz
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Gerd Kager
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Gerhard Ledinski
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Martin Koestenberger
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, 8010 Graz, Austria;
| | - Willibald Wonisch
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Thomas Wagner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Sebastian P. Schwaminger
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Bruno Di Geronimo
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Seth Hallstöm
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
- Division of Biomedical Research and Translational Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Gilbert Reibnegger
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| | - Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, 8010 Graz, Austria; (C.R.); (C.R.); (G.K.); (G.L.); (W.W.); (S.P.S.); (B.D.G.); (S.H.); (G.R.); (M.P.)
| |
Collapse
|
2
|
Oudebrouckx G, Goossens J, Bormans S, Vandenryt T, Wagner P, Thoelen R. Integrating Thermal Sensors in a Microplate Format: Simultaneous Real-Time Quantification of Cell Number and Metabolic Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2440-2451. [PMID: 34990545 DOI: 10.1021/acsami.1c14668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplates have become a standard tool in the pharmaceutical industry and academia for a broad range of screening assays. One of the most commonly performed assays is the cell proliferation assay, which is often used for the purpose of drug discovery. Microplate readers play a crucial role in this field, as they enable high-throughput testing of large sample numbers. Common drawbacks of the most popular plate reader technologies are that they are end-point-based and most often require the use of detection reagents. As a solution, with this work, we aim to expand the possibilities of real-time and label-free monitoring of cell proliferation inside a microplate format by introducing a novel thermal-based sensing approach. For this purpose, we have developed thin-film sensors that can easily be integrated into the bottom of standard 96-well plates. First, the accuracy and precision of the sensors for measuring temperature and thermal effusivity are assessed via characterization experiments. These experiments highlight the fast response of the sensors to changes in temperature and thermal effusivity, as well as the excellent reproducibility between different sensors. Later, proof-of-principle measurements were performed on the proliferation of Saccharomyces cerevisiae. The proliferation measurements show that the thermal sensors were able to simultaneously detect relative changes in cell number as well as changes in metabolic activity. This dual functionality makes the presented sensor technology a promising candidate for monitoring microplate assays.
Collapse
Affiliation(s)
- Gilles Oudebrouckx
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Juul Goossens
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Seppe Bormans
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Thijs Vandenryt
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, KU Leuven, 3001 Leuven, Belgium
| | - Ronald Thoelen
- Institute for Materials Research (IMO), Hasselt University, 3500 Hasselt, Belgium
- Division IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| |
Collapse
|
3
|
Ortiz-Severín J, Tandberg JI, Winther-Larsen HC, Chávez FP, Cambiazo V. Comparative Analysis of Salmon Cell Lines and Zebrafish Primary Cell Cultures Infection with the Fish Pathogen Piscirickettsia salmonis. Microorganisms 2021; 9:microorganisms9122516. [PMID: 34946119 PMCID: PMC8706985 DOI: 10.3390/microorganisms9122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Piscirickettsia salmonis is the etiologic agent of piscirickettsiosis, a disease that causes significant losses in the salmon farming industry. In order to unveil the pathogenic mechanisms of P. salmonis, appropriate molecular and cellular studies in multiple cell lines with different origins need to be conducted. Toward that end, we established a cell viability assay that is suitable for high-throughput analysis using the alamarBlue reagent to follow the distinct stages of the bacterial infection cycle. Changes in host cell viability can be easily detected using either an absorbance- or fluorescence-based plate reader. Our method accurately tracked the infection cycle across two different Atlantic salmon-derived cell lines, with macrophage and epithelial cell properties, and zebrafish primary cell cultures. Analyses were also carried out to quantify intracellular bacterial replication in combination with fluorescence microscopy to visualize P. salmonis and cellular structures in fixed cells. In addition, dual gene expression analysis showed that the pro-inflammatory cytokines IL-6, IL-12, and TNFα were upregulated, while the cytokines IL1b and IFNγ were downregulated in the three cell culture types. The expression of the P. salmonis metal uptake and heme acquisition genes, together with the toxin and effector genes ospD3, ymt, pipB2 and pepO, were upregulated at the early and late stages of infection regardless of the cell culture type. On the other hand, Dot/Icm secretion system genes as well as stationary state and nutrient scarcity-related genes were upregulated only at the late stage of P. salmonis intracellular infection. We propose that these genes encoding putative P. salmonis virulence factors and immune-related proteins could be suitable biomarkers of P. salmonis infection. The infection protocol and cell viability assay described here provide a reliable method to compare the molecular and cellular changes induced by P. salmonis in other cell lines and has the potential to be used for high-throughput screenings of novel antimicrobials targeting this important fish intracellular pathogen.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.O.-S.); (F.P.C.)
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830489, Chile
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
| | - Julia I. Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
- Department of Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Hanne C. Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
- Department of Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.O.-S.); (F.P.C.)
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830489, Chile
- Fondap Center for Genome Regulation, Universidad de Chile, Santiago 8370415, Chile
- Correspondence:
| |
Collapse
|
4
|
Noninvasive and Safe Cell Viability Assay for Breast Cancer MCF-7 Cells Using Natural Food Pigment. BIOLOGY 2020; 9:biology9080227. [PMID: 32823990 PMCID: PMC7463555 DOI: 10.3390/biology9080227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023]
Abstract
A dye exclusion test (DET) was performed to determine the viability of human breast cancer cells MCF-7, using natural food pigments as compared with trypan blue (TB), a typical synthetic dye for DET known to exhibit teratogenicity and cytotoxicity. We demonstrated that Monascus pigment (MP) is noninvasive to living cells and can effectively stain only dead cells. This study is the first verification of the applicability of MP to cancer cells. The appropriate MP concentration was 0.4% (0.02% as the concentration of pure MP) and all the dead cells were stained within 10 min. We found that the cell proliferation or the reduced nicotinamide adenine dinucleotide (NADH) activity of living cells was maintained over 48 h. Although 0.1% TB did not show an increase in dead cells, a marked decrease in NADH activity was confirmed. In addition, even when MP coexisted with cisplatin, staining of dead cells was maintained for 47 h, indicating stability to drugs (reagents). The cost of MP is estimated to be about 1/10 of TB. The fact that MP can be used as a cell viability determination reagent for Euglena and Paramecium, as shown in preceding papers, and also for MCF-7, as shown in this paper, indicates the possibility of application in more cells of different species.
Collapse
|
5
|
Yamashita K, Tokunaga E. Noninvasive and safe cell viability assay for Paramecium using natural pigment extracted from food. Sci Rep 2020; 10:10996. [PMID: 32620770 PMCID: PMC7334208 DOI: 10.1038/s41598-020-67712-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
Noninvasive, safe and cost-effective cell viability assay is important in many fields of biological research such as cell culture and counting. We examined ten typical natural pigments extracted from food to find that Monascus pigment (MP) or anthocyanin pigment (AP: purple sweet potato and purple cabbage) with Tris (Trimethylolaminomethane) works as a good indicator of viability assay for dye exclusion test (DET) of Paramecium. This was confirmed spectrally by scan-free, non-invasive absorbance spectral imaging A (x, y, λ) microscopy. We developed a new method of cell capture using a metal mesh to confine live Paramecium in a restricted space. This has the advantage that a low-cost and robust capture can be fabricated without using special equipment, compared to a conventional lab-on-a-chip. As a result, MP and AP stained dead cells as quick as methylene blue (MB), a synthetic dye conventionally used in DET within 1 min when treated with microwave and benzalkonium chloride. The natural pigments with Tris had little effect on inhibiting the growth of Paramecium, but MB killed all the cells within 1 h. MP is most useful because it allows non-invasive DET without Tris. This approach provides less invasive and safe DET.
Collapse
Affiliation(s)
- Kyohei Yamashita
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Eiji Tokunaga
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| |
Collapse
|
6
|
Resazurin-Based Assay for Quantifying Living Cells during Alkaline Phosphatase (ALP) Release. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatase (ALP) is an important reporter gene in the gene expression system, therefore monitoring cellular behavior including cell viability during ALP release is of significance. This assay produced a quantitative resazurin-based assay for cell viability in embryonic and cancer cells during alkaline phosphatase (ALP) release. A post-confluence culture method was applied to induce ALP in the cells of Balb/c 3T3, A549, MCF-7, and Ht-29. The density of each cell type was optimized using the standard cell culture assay. The main parameters affecting the results of resazurin involve the concentration of resazurin, incubation time, and cell number. The redox reaction, in which resazurin is reduced by the cells, was measured by fluorescence at 544 nm and 590 nm. The obtained data were compared with the hemocytometer assay. ALP release was determined using the optical active substrate p-nitrophenyl phosphate and colorimetric assay.
Collapse
|
7
|
Yamashita K, Yamada K, Suzuki K, Tokunaga E. Noninvasive and safe cell viability assay for Euglena gracilis using natural food pigment. PeerJ 2019; 7:e6636. [PMID: 30976462 PMCID: PMC6451837 DOI: 10.7717/peerj.6636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022] Open
Abstract
Noninvasive and safe cell viability assay is required in many fields such as regenerative medicine, genetic engineering, single-cell analysis, and microbial food culture. In this case, a safe and inexpensive method which is a small load on cells and the environment is preferable without requiring expensive and space-consuming equipment and a technician to operate. We examined eight typical natural food pigments to find Monascus pigment (MP) or anthocyanin pigment (AP) works as a good viability indicator of dye exclusion test (DET) for Euglena gracilis which is an edible photosynthetic green microalga. This is the first report using natural food pigments as cell viability assay. Euglena gracilis stained by MP or AP can be visually judged with a bright field microscope. This was spectrally confirmed by scan-free, non-invasive absorbance spectral imaging A(x, y, λ) microscopy of single live cells and principal component analysis (PCA). To confirm the ability of staining dead cells and examine the load on the cells, these two natural pigments were compared with trypan blue (TB) and methylene blue (MP), which are synthetic dyes conventionally used for DET. As a result, MP and AP had as good ability of staining dead cells treated with microwave as TB and MB and showed faster and more uniform staining for dead cells in benzalkonium chloride than them. The growth curve and the ratio of dead cells in the culture showed that the synthetic dyes inhibit the growth of E. gracilis, but the natural pigments do not. As the cell density increased, however, AP increased the ratio of stained cells, which was prevented by the addition of glucose. MP can stain dead cells in a shorter time than AP, while AP is more stable in color against long-term irradiation of intense light than MP. Due to the low toxicity of these pigments, viability of cells in culture can be monitored with them over a long period.
Collapse
Affiliation(s)
- Kyohei Yamashita
- Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Koji Yamada
- euglena Co., Ltd., Tsurumi-ku, Yokohama-shi, Kanagawa, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., Tsurumi-ku, Yokohama-shi, Kanagawa, Japan
| | - Eiji Tokunaga
- Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
8
|
Jesus JA, Fragoso TN, Yamamoto ES, Laurenti MD, Silva MS, Ferreira AF, Lago JHG, Santos-Gomes G, Passero LFD. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis. Int J Parasitol Drugs Drug Resist 2017; 7:1-11. [PMID: 27984757 PMCID: PMC5156607 DOI: 10.1016/j.ijpddr.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated daily during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was stimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.
Collapse
Affiliation(s)
- Jéssica A Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil; Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Thais N Fragoso
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Marcelo S Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Aurea F Ferreira
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Gabriela Santos-Gomes
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Luiz Felipe D Passero
- São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| |
Collapse
|
9
|
Goitea VE, Hallak ME. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation. J Biol Chem 2015; 290:16403-14. [PMID: 25969538 DOI: 10.1074/jbc.m114.626127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Indexed: 12/31/2022] Open
Abstract
Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm.
Collapse
Affiliation(s)
- Victor E Goitea
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Marta E Hallak
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas, and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
10
|
Van den Driessche F, Rigole P, Brackman G, Coenye T. Optimization of resazurin-based viability staining for quantification of microbial biofilms. J Microbiol Methods 2014; 98:31-4. [DOI: 10.1016/j.mimet.2013.12.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/10/2013] [Accepted: 12/14/2013] [Indexed: 01/30/2023]
|
11
|
Munigunti R, Gathiaka S, Acevedo O, Sahu R, Tekwani B, Calderón AI. Characterization of PfTrxR inhibitors using antimalarial assays and in silico techniques. Chem Cent J 2013; 7:175. [PMID: 24209891 PMCID: PMC3828397 DOI: 10.1186/1752-153x-7-175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023] Open
Abstract
Background The compounds 1,4-napthoquinone (1,4-NQ), bis-(2,4-dinitrophenyl)sulfide (2,4-DNPS), 4-nitrobenzothiadiazole (4-NBT), 3-dimethylaminopropiophenone (3-DAP) and menadione (MD) were tested for antimalarial activity against both chloroquine (CQ)-sensitive (D6) and chloroquine (CQ)-resistant (W2) strains of Plasmodium falciparum through an in vitro assay and also for analysis of non-covalent interactions with P. falciparum thioredoxin reductase (PfTrxR) through in silico docking studies. Results The inhibitors of PfTrxR namely, 1,4-NQ, 4-NBT and MD displayed significant antimalarial activity with IC50 values of < 20 μM and toxicity against 3T3 cell line. 2,4-DNPS was only moderately active. In silico docking analysis of these compounds with PfTrxR revealed that 2,4-DNPS, 4-NBT and MD interact non-covalently with the intersubunit region of the enzyme. Conclusions In this study, tools for the identification of PfTrxR inhibitors using phenotyphic screening and docking studies have been validated for their potential use for antimalarial drug discovery project.
Collapse
Affiliation(s)
| | | | | | | | | | - Angela I Calderón
- Department of Pharmacal Sciences, 4306 Walker Building, Auburn University, Auburn, AL, USA.
| |
Collapse
|
12
|
Caleffi-Ferracioli KR, Maltempe FG, Siqueira VLD, Cardoso RF. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis (Edinb) 2013; 93:660-3. [DOI: 10.1016/j.tube.2013.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|