1
|
Gielbert A, Thorne JK, Plater JM, Thorne L, Griffiths PC, Simmons MM, Cassar CA. Molecular characterisation of atypical BSE prions by mass spectrometry and changes following transmission to sheep and transgenic mouse models. PLoS One 2018; 13:e0206505. [PMID: 30408075 PMCID: PMC6224059 DOI: 10.1371/journal.pone.0206505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/14/2018] [Indexed: 11/18/2022] Open
Abstract
The prion hypothesis proposes a causal relationship between the misfolded prion protein (PrPSc) molecular entity and the disease transmissible spongiform encephalopathy (TSE). Variations in the conformation of PrPSc are associated with different forms of TSE and different risks to animal and human health. Since the discovery of atypical forms of bovine spongiform encephalopathy (BSE) in 2003, scientists have progressed the molecular characterisation of the associated PrPSc in order to better understand these risks, both in cattle as the natural host and following experimental transmission to other species. Here we report the development of a mass spectrometry based assay for molecular characterisation of bovine proteinase K (PK) treated PrPSc (PrPres) by quantitative identification of its N-terminal amino acid profiles (N-TAAPs) and tryptic peptides. We have applied the assay to classical, H-type and L-type BSE prions purified from cattle, transgenic (Tg) mice expressing the bovine (Tg110 and Tg1896) or ovine (TgEM16) prion protein gene, and sheep brain. We determined that, for classical BSE in cattle, the G96 N-terminal cleavage site dominated, while the range of cleavage sites was wider following transmission to Tg mice and sheep. For L-BSE in cattle and Tg bovinised mice, a C-terminal shift was identified in the N-TAAP distribution compared to classical BSE, consistent with observations by Western blot (WB). For L-BSE transmitted to sheep, both N-TAAP and tryptic peptide profiles were found to be changed compared to cattle, but less so following transmission to Tg ovinised mice. Relative abundances of aglycosyl peptides were found to be significantly different between the atypical BSE forms in cattle as well as in other hosts. The enhanced resolution provided by molecular analysis of PrPres using mass spectrometry has improved insight into the molecular changes following transmission of atypical BSE to other species.
Collapse
Affiliation(s)
- Adriana Gielbert
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
- * E-mail:
| | - Jemma K. Thorne
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Jane M. Plater
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Leigh Thorne
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Peter C. Griffiths
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Marion M. Simmons
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| | - Claire A. Cassar
- Animal and Plant Health Agency-Weybridge, Addlestone, Surrey, United Kingdom
| |
Collapse
|
2
|
A novel photoelectrochemical immunosensor for prion protein based on CdTe quantum dots and glucose oxidase. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Li X, Li J, Zhu C, Zhang X, Chen J. A new electrochemical immunoassay for prion protein based on hybridization chain reaction with hemin/G-quadruplex DNAzyme. Talanta 2018; 182:292-298. [PMID: 29501155 DOI: 10.1016/j.talanta.2018.01.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022]
Abstract
In this work, a new electrochemical immunosensor was developed for prion protein assay based on hybridization chain reaction (HCR) with hemin/G-quadruplex DNAzyme for signal amplification. In this amplification system, the hemin/G-quadruplex DNAzyme simultaneously mimicked the biocatalytic functions for H2O2 reduction and L-cysteine oxidation. In the presence of L-cysteine, the hemin/G-quadruplex catalyzed the oxidation of L-cysteine to L-cystine. At the same time, H2O2 was produced under the oxygen condition. Then, the hemin/G-quadruplex could quickly catalyze the reduction of H2O2, mimicking the catalytic performance of horseradish peroxidase (HRP). Under the optimal conditions, the immunosensor showed a wide linear response range from 0.5 pg/mL to 100 ng/mL with the low detection limit of 0.38 pg/mL (3σ). By changing the specific antibody, this strategy could be easily extended to detect the infectious isoform of prion (PrPSc) and other proteins. Based on its good analytical performance, the developed method shows great potential applications in diagnosis of prion diseases at presymptomatic stage and bioanalysis.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Junjing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Caixia Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Li J, Yan X, Li X, Zhang X, Chen J. A new electrochemical immunosensor for sensitive detection of prion based on Prussian blue analogue. Talanta 2017; 179:726-733. [PMID: 29310300 DOI: 10.1016/j.talanta.2017.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 11/28/2022]
Abstract
Based on Co-Co Prussian blue analogue (Co-Co PBA), a novel immunosensor has been developed for sensitive detection of prion protein (PrPC). Gold nanoparticles (AuNPs)-modified Co-Co PBA nanocubes (PBA-AuNPs) worked as a support of the antibody (Ab2) of PrPC to obtain Ab2-PBA-AuNPs composite and also as the signal source for PrPC assay. When PrPC existed, Ab2-PBA-AuNPs could be introduced to the surface of another antibody of PrPC (Ab1) modified AuNPs/GC electrode (the gold nanoparticles-modified glassy carbon electrode) through specific antigen-antibody interaction between PrPC and its antibodies to form the Ab1-PrPC-Ab2 sandwich structure. With the help of KOH aqueous solution, PBA generated a large DPV response. The response peak currents were linear with the logarithmic values of the concentration of PrPC in the range from 0.075pgmL-1 to 100pgmL-1 with the detection limit of 0.014pgmL-1. Also, the immunosensor showed good selectivity and reproducibility. Based on the simple sensing structure and good analytical performance, the developed immunosensor may have promising applications in practical assay of infectious isoform of prion (PrPSc) and other proteins by simply changing the related antibody.
Collapse
Affiliation(s)
- Junjing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoxia Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
5
|
Yu P, Zhang X, Xiong E, Zhou J, Li X, Chen J. A label-free and cascaded dual-signaling amplified electrochemical aptasensing platform for sensitive prion assay. Biosens Bioelectron 2016; 85:471-478. [PMID: 27208480 DOI: 10.1016/j.bios.2016.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 01/18/2023]
Abstract
Prion proteins, as an important biomarker of prion disease, are responsible for the transmissible spongiform encephalopathies (a group of fatal neurodegenerative diseases). Hence, the sensitive detection of prion protein is very essential for biological studies and medical diagnostics. In this paper, a novel label-free and cascaded dual-signaling amplified electrochemical strategy was developed for sensitive and selective analysis of cellular prion protein (PrP(C)). The recognition elements included double-stranded DNA consisted of PrP(C)-binding aptamer (DNA1) and its partially complementary DNA (DNA2), and ordered mesoporous carbon probe (OMCP) fabricated by sealing the electroactive ferrocenecarboxylic acid (Fc) into its inner pores and then using single-stranded DNA (DNA3) as the gatekeeper. In the presence of PrP(C), DNA1 could bind the target protein and free DNA2. More importantly, DNA2 could hybridize with DNA3 to form a rigid duplex DNA and thus triggered the exonuclease III (Exo III) cleavage process to realize the DNA2 recycling, accompanied by opening more biogates and releasing more Fc. The released Fc could be further used as a competitive guest of β-cyclodextrin (β-CD) to displace the Rhodamine B (RhB) on the electrode. As a result, an amplified oxidation peak current of Fc (RhB) increased (decreased) with the increase of PrP(C) concentration. When "ΔI=ΔIFc+|ΔIRhB|" (ΔIFc and ΔIRhB were the change values of the oxidation peak currents of Fc and RhB, respectively.) was used as the response signal for quantitative determination of PrP(C), the detection limit was 7.6fM (3σ), which was much lower than that of the most reported methods for PrP(C) assay. This strategy provided a simple and sensitive approach for the detection of PrP(C) and has a great potential for bioanalysis, disease diagnostics, and clinical biomedicine applications.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jiawan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
6
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
7
|
Gielbert A, Thorne JK, Hope J. Pyroglutamyl-N-terminal prion protein fragments in sheep brain following the development of transmissible spongiform encephalopathies. Front Mol Biosci 2015; 2:7. [PMID: 25988175 PMCID: PMC4429639 DOI: 10.3389/fmolb.2015.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
Protein misfolding, protein aggregation and disruption to cellular proteostasis are key processes in the propagation of disease and, in some progressive neurodegenerative diseases of the central nervous system, the misfolded protein can act as a self-replicating template or prion converting its normal isoform into a misfolded copy of itself. We have investigated the sheep transmissible spongiform encephalopathy, scrapie, and developed a multiple selected reaction monitoring (mSRM) mass spectrometry assay to quantify brain peptides representing the “ragged” N-terminus and the core of ovine prion protein (PrPSc) by using Q-Tof mass spectrometry. This allowed us to identify pyroglutamylated N-terminal fragments of PrPSc at residues 86, 95 and 101, and establish that these fragments were likely to be the result of in vivo processes. We found that the ratios of pyroglutamylated PrPSc fragments were different in sheep of different breeds and geographical origin, and our expanded ovine PrPSc assay was able to determine the ratio and allotypes of PrP accumulating in diseased brain of PrP heterozygous sheep; it also revealed significant differences between N-terminal amino acid profiles (N-TAAPs) in other types of ovine prion disease, CH1641 scrapie and ovine BSE. Variable rates of PrP misfolding, aggregation and degradation are the likely basis for phenotypic (or strain) differences in prion-affected animals and our mass spectrometry-based approach allows the simultaneous investigation of factors such as post-translational modification (pyroglutamyl formation), conformation (by N-TAAP analysis) and amino-acid polymorphisms (allotype ratio) which affect the kinetics of these proteostatic processes.
Collapse
Affiliation(s)
- Adriana Gielbert
- Department of Pathology, Animal and Plant Health Agency-Weybridge Addlestone, UK
| | - Jemma K Thorne
- Department of Pathology, Animal and Plant Health Agency-Weybridge Addlestone, UK
| | - James Hope
- Science Strategy Group, Animal and Plant Health Agency-Weybridge Addlestone, UK
| |
Collapse
|
8
|
Silva CJ. Applying the tools of chemistry (mass spectrometry and covalent modification by small molecule reagents) to the detection of prions and the study of their structure. Prion 2015; 8:42-50. [PMID: 24509645 DOI: 10.4161/pri.27891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prions are molecular pathogens, able to convert a normal cellular prion protein (PrP(C)) into a prion (PrP(Sc)). The information necessary for this conversion is contained in the conformation of PrP(Sc). Mass spectrometry (MS) and small-molecule covalent reactions have been used to study prions. Mass spectrometry has been used to detect and quantitate prions in the attomole range (10⁻¹⁸ mole). MS-based analysis showed that both possess identical amino acid sequences, one disulfide bond, a GPI anchor, asparagine-linked sugar antennae, and unoxidized methionines. Mass spectrometry has been used to define elements of the secondary and tertiary structure of wild-type PrP(Sc) and GPI-anchorless PrP(Sc). It has also been used to study the quaternary structure of the PrP(Sc) multimer. Small molecule reagents react differently with the same lysine in the PrP(C) conformation than in the PrP(Sc) conformation. Such differences can be detected by Western blot using mAbs with lysine-containing epitopes, such as 3F4 and 6D11. This permits the detection of PrP(Sc) without the need for proteinase K pretreatment and can be used to distinguish among prion strains. These results illustrate how two important chemical tools, mass spectrometry and covalent modification by small molecules, are being applied to the detection and structural study of prions. Furthermore these tools are or can be applied to the study of the other protein misfolding diseases such as Alzheimer Disease, Parkinson Disease, or ALS.
Collapse
|