1
|
Yang J, Sun W, Sun M, Cui Y, Wang L. Current Research Status of Azaspiracids. Mar Drugs 2024; 22:79. [PMID: 38393050 PMCID: PMC10890026 DOI: 10.3390/md22020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The presence and impact of toxins have been detected in various regions worldwide ever since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on marine resource utilization, marine environmental protection, and fishery production. Over the course of more than two decades of research and development, scientists from all over the world have conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over the past 20 years, along with their advantages and disadvantages. This effort will contribute to the future development of rapid detection technologies and the invention of detection devices for AZAs in marine environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China; (J.Y.); (W.S.); (M.S.); (Y.C.)
| |
Collapse
|
2
|
Glaviano F, Ruocco N, Somma E, De Rosa G, Campani V, Ametrano P, Caramiello D, Costantini M, Zupo V. Two Benthic Diatoms, Nanofrustulum shiloi and Striatella unipunctata, Encapsulated in Alginate Beads, Influence the Reproductive Efficiency of Paracentrotus lividus by Modulating the Gene Expression. Mar Drugs 2021; 19:md19040230. [PMID: 33920652 PMCID: PMC8074093 DOI: 10.3390/md19040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Physiological effects of algal metabolites is a key step for the isolation of interesting bioactive compounds. Invertebrate grazers may be fed on live diatoms or dried, pelletized, and added to compound feeds. Any method may reveal some shortcomings, due to the leaking of wound-activated compounds in the water prior to ingestion. For this reason, encapsulation may represent an important step of bioassay-guided fractionation, because it may assure timely preservation of the active compounds. Here we test the effects of the inclusion in alginate (biocompatible and non-toxic delivery system) matrices to produce beads containing two benthic diatoms for sea urchin Paracentrotus lividus feeding. In particular, we compared the effects of a diatom whose influence on P. lividus was known (Nanofrustulum shiloi) and those of a diatom suspected to be harmful to marine invertebrates, because it is often present in blooms (Striatella unipunctata). Dried N. shiloi and S. unipunctata were offered for one month after encapsulation in alginate hydrogel beads and the larvae produced by sea urchins were checked for viability and malformations. The results indicated that N. shiloi, already known for its toxigenic effects on sea urchin larvae, fully conserved its activity after inclusion in alginate beads. On the whole, benthic diatoms affected the embryogenesis of P. lividus, altering the expression of several genes involved in stress response, development, skeletogenesis and detoxification processes. Interactomic analysis suggested that both diatoms activated a similar stress response pathway, through the up-regulation of hsp60, hsp70, NF-κB, 14-3-3 ε and MDR1 genes. This research also demonstrates that the inclusion in alginate beads may represent a feasible technique to isolate diatom-derived bioactive compounds.
Collapse
Affiliation(s)
- Francesca Glaviano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
| | - Emanuele Somma
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (V.C.)
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (V.C.)
| | - Pasquale Ametrano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Davide Caramiello
- Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Correspondence: (M.C.); (V.Z.); Tel.: +39-081-583-3315 (M.C.); Fax: +39-081-764-1355 (M.C.)
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Correspondence: (M.C.); (V.Z.); Tel.: +39-081-583-3315 (M.C.); Fax: +39-081-764-1355 (M.C.)
| |
Collapse
|
3
|
Dillon M, Zaczek-Moczydlowska MA, Edwards C, Turner AD, Miller PI, Moore H, McKinney A, Lawton L, Campbell K. Current Trends and Challenges for Rapid SMART Diagnostics at Point-of-Site Testing for Marine Toxins. SENSORS (BASEL, SWITZERLAND) 2021; 21:2499. [PMID: 33916687 PMCID: PMC8038394 DOI: 10.3390/s21072499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
In the past twenty years marine biotoxin analysis in routine regulatory monitoring has advanced significantly in Europe (EU) and other regions from the use of the mouse bioassay (MBA) towards the high-end analytical techniques such as high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS). Previously, acceptance of these advanced methods, in progressing away from the MBA, was hindered by a lack of commercial certified analytical standards for method development and validation. This has now been addressed whereby the availability of a wide range of analytical standards from several companies in the EU, North America and Asia has enhanced the development and validation of methods to the required regulatory standards. However, the cost of the high-end analytical equipment, lengthy procedures and the need for qualified personnel to perform analysis can still be a challenge for routine monitoring laboratories. In developing regions, aquaculture production is increasing and alternative inexpensive Sensitive, Measurable, Accurate and Real-Time (SMART) rapid point-of-site testing (POST) methods suitable for novice end users that can be validated and internationally accepted remain an objective for both regulators and the industry. The range of commercial testing kits on the market for marine toxin analysis remains limited and even more so those meeting the requirements for use in regulatory control. Individual assays include enzyme-linked immunosorbent assays (ELISA) and lateral flow membrane-based immunoassays (LFIA) for EU-regulated toxins, such as okadaic acid (OA) and dinophysistoxins (DTXs), saxitoxin (STX) and its analogues and domoic acid (DA) in the form of three separate tests offering varying costs and benefits for the industry. It can be observed from the literature that not only are developments and improvements ongoing for these assays, but there are also novel assays being developed using upcoming state-of-the-art biosensor technology. This review focuses on both currently available methods and recent advances in innovative methods for marine biotoxin testing and the end-user practicalities that need to be observed. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid POST, indicating potential detection methods that will shape the future market.
Collapse
Affiliation(s)
- Michael Dillon
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
- Faculty of Health, Peninsula Medical School, University of Plymouth, Plymouth PL4 8AA, UK
| | - Maja A. Zaczek-Moczydlowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK;
| | - Peter I. Miller
- Plymouth Marine Laboratory, Remote Sensing Group, Prospect Place, Plymouth PL1 3DH, UK;
| | - Heather Moore
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - April McKinney
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| |
Collapse
|
4
|
Samdal IA, Løvberg KE, Kristoffersen AB, Briggs LR, Kilcoyne J, Forsyth CJ, Miles CO. A Practical ELISA for Azaspiracids in Shellfish via Development of a New Plate-Coating Antigen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2369-2376. [PMID: 30763083 DOI: 10.1021/acs.jafc.8b05652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins that appear periodically in shellfish and can cause food poisoning in humans. Current methods for quantifying the regulated AZAs are restricted to LC-MS but are not well suited to detecting novel and unregulated AZAs. An ELISA method for total AZAs in shellfish was reported recently, but unfortunately, it used relatively large amounts of the AZA-1-containing plate-coating conjugate, consuming significant amounts of pure AZA-1 per assay. Therefore, a new plate-coater, OVA-cdiAZA1 was produced, resulting in an ELISA with a working range of 0.30-4.1 ng/mL and a limit of quantification of 37 μg/kg for AZA-1 in shellfish. This ELISA was nearly twice as sensitive as the previous ELISA while using 5-fold less plate-coater. The new ELISA displayed broad cross-reactivity toward AZAs, detecting all available quantitative AZA reference materials as well as the precursors to AZA-3 and AZA-6, and results from shellfish analyzed with the new ELISA showed excellent correlation ( R2 = 0.99) with total AZA-1-10 by LC-MS. The results suggest that the new ELISA is suitable for screening samples for total AZAs, even in cases where novel AZAs are present and regulated AZAs are absent, such as was reported recently from Puget Sound and the Bay of Naples.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
| | | | - Lyn R Briggs
- AgResearch Ltd., Ruakura Research Centre , Hamilton 3214 , New Zealand
| | - Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, County Galway H91 R673 , Ireland
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43220 , United States
| | - Christopher O Miles
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
- National Research Council Canada , 1411 Oxford St , Halifax , NS B3H 3Z1 , Canada
| |
Collapse
|
5
|
Verma SK, Albrecht AK, Siebecke V, Klöck G, Kolesnikova TA, Springer S. Comparative validation of a microcapsule-based immunoassay for the detection of proteins and nucleic acids. PLoS One 2018; 13:e0201009. [PMID: 30028867 PMCID: PMC6054379 DOI: 10.1371/journal.pone.0201009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
To detect and study diseases, research and clinical laboratories must quantify specific biomarkers in the plasma and urine of patients with precision, sensitivity, and cost-effectiveness. Newly developed techniques, such as particle-based immunoassays, must be validated in these terms against standard methods such as enzyme-linked immunosorbent assays (ELISAs). Here, we compare the performance of assays that use hollow polyelectrolyte microcapsules with assays based on solid plastic beads, and with standard microplate immunoassays. The polyelectrolyte microcapsules detect the disease biomarker beta-2 microglobulin with a fifty-fold increase in sensitivity than polystyrene (PS) beads. For sequence-specific nucleic acid detection, the oligonucleotide-coated microcapsules exhibit a two-fold lower increase in sensitivity over PS beads. The microcapsules also detect the presence of a monoclonal antibody in hybridoma supernatant at a fifty-six-fold increase in sensitivity compared to a microplate assay. Overall, polyelectrolyte microcapsule-based assays are more sensitive for the detection of protein and nucleic acid analytes than PS beads and microplate assays, and they are viable alternatives as a platform for the rapid quantitative detection of analytes at very low concentrations.
Collapse
Affiliation(s)
- Sujit Kumar Verma
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | | | | | - Gerd Klöck
- City University of Applied Sciences, Bremen, Germany
| | | | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
- * E-mail:
| |
Collapse
|
6
|
Shim C, Chong R, Lee JH. Enzyme-free chemiluminescence immunoassay for the determination of thyroid stimulating hormone. Talanta 2017; 171:229-235. [DOI: 10.1016/j.talanta.2017.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022]
|
7
|
Leonardo S, Rambla-Alegre M, Samdal IA, Miles CO, Kilcoyne J, Diogène J, O'Sullivan CK, Campàs M. Immunorecognition magnetic supports for the development of an electrochemical immunoassay for azaspiracid detection in mussels. Biosens Bioelectron 2017; 92:200-206. [DOI: 10.1016/j.bios.2017.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
|
8
|
Marine Toxins Analysis for Consumer Protection. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Rapid Detection of Ochratoxin A in Malt by Cytometric Bead Array Based on Indirect Competition Principle. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60927-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fraga M, Vilariño N, Louzao MC, Fernández DA, Poli M, Botana LM. Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods. Anal Chim Acta 2015; 903:1-12. [PMID: 26709295 DOI: 10.1016/j.aca.2015.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean-European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47-6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 μg kg(-1) when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes.
Collapse
Affiliation(s)
- María Fraga
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Diego A Fernández
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mark Poli
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
11
|
Samdal IA, Løvberg KE, Briggs LR, Kilcoyne J, Xu J, Forsyth CJ, Miles CO. Development of an ELISA for the Detection of Azaspiracids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7855-7861. [PMID: 26245830 DOI: 10.1021/acs.jafc.5b02513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins that cause food poisoning in humans. These toxins are produced by small marine dinoflagellates such as Azadinium spinosum and accumulate in shellfish. Ovine polyclonal antibodies were produced and used to develop an ELISA for quantitating AZAs in shellfish, algal cells, and culture supernatants. Immunizing antigens were prepared from synthetic fragments of the constant region of AZAs, while plate coating antigen was prepared from AZA-1. The ELISA provides a sensitive and rapid analytical method for screening large numbers of samples. It has a working range of 0.45-8.6 ng/mL and a limit of quantitation for total AZAs in whole shellfish at 57 μg/kg, well below the maximum permitted level set by the European Commission. The ELISA has good cross-reactivity to AZA-1-10, -33, and -34 and 37-epi-AZA-1. Naturally contaminated Irish mussels gave similar results whether they were cooked or uncooked, indicating that the ELISA also detects 22-carboxy-AZA metabolites (e.g., AZA-17 and AZA-19). ELISA results showed excellent correlation with LC-MS/MS analysis, both for mussel extract spiked with AZA-1 and for naturally contaminated Irish mussels. The assay is therefore well suited to screening for AZAs in shellfish samples intended for human consumption, as well as for studies on AZA metabolism.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Lyn R Briggs
- AgResearch, Ruakura, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, County Galway, Ireland
| | - Jianyan Xu
- Department of Chemistry, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|