1
|
Ray P, Sedigh A, Confeld M, Alhalhooly L, Iduoku K, Casanola-Martin GM, Pham-The H, Rasulev B, Choi Y, Yang Z, Mallik S, Quadir M. Design and evaluation of nanoscale materials with programmed responsivity towards epigenetic enzymes. J Mater Chem B 2024; 12:9905-9920. [PMID: 39021201 DOI: 10.1039/d4tb00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly(acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. The hydrodynamic diameters of particles were typically withing the range of 108-190 nm, depending on degree of acetylation of the hydrophobic block. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We also demonstrated the biocompatibility and cellular effects of these materials in the context of drug delivery in different types of anticancer cell lines, such as MIA PaCa-2, PANC-1, cancer like stem cells (CSCs), and non-cancerous HPNE cells. We observed that the release of a model drug (such as a STAT3 pathway inhibitor, Napabucasin) can be loaded into these nanoparticles, with >90% of the dosage can be released over 3 h under the influence of HDAC8 enzyme in a controlled fashion. Further, we conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Abbas Sedigh
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Matthew Confeld
- Deapartment of Physics, North Dakota State University, Fargo, ND 58102, USA
| | - Lina Alhalhooly
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Hai Pham-The
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| | - Yongki Choi
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Zhongyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
2
|
Ray P, Sedigh A, Confeld M, Alhalhooly L, Iduoku K, Casanola-Martin GM, Pham-The H, Rasulev B, Choi Y, Yang Z, Mallik S, Quadir M. Design and Evaluation of Nanoscale Materials with Programmed Responsivity towards Epigenetic Enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.585429. [PMID: 38586020 PMCID: PMC10996597 DOI: 10.1101/2024.03.26.585429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly (acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We further demonstrated the biocompatibility and cellular effects of these materials and conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.
Collapse
|
3
|
Fraser OA, Namitz KEW, Showalter SA. Advances in direct detection of lysine methylation and acetylation by nuclear magnetic resonance using 13C-enriched cofactors. Methods 2023; 218:72-83. [PMID: 37524235 PMCID: PMC10528339 DOI: 10.1016/j.ymeth.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Post-translational modifications (PTMs) are reversible chemical modifications that can modulate protein structure and function. Methylation and acetylation are two such PTMs with integral and well-characterized biological roles, including modulation of chromatin structure; and unknown or poorly understood roles, exemplified by the influence of these PTMs on transcription factor structure and function. The need for biological insights into the function of these PTMs motivates the development of a nondestructive and label-free method that enables pursuit of molecular mechanisms. Here, we present a protocol for implementing nuclear magnetic resonance (NMR) methods that allow for unambiguous detection of methylation and acetylation events and demonstrate their utility by observing these marks on histone H3 tail as a model system. We leverage strategic isotopic enrichment of cofactor and peptide for visualization by [1H, 13C]-HSQC and 13C direct-detect NMR measurements. Finally, we present 13C-labeling schemes that facilitate one-dimensional NMR experiments, which combine reduced measurement time relative to two-dimensional spectroscopy with robust filtering of background signals that would otherwise create spectral crowding or limit detection of low-abundance analytes.
Collapse
Affiliation(s)
- Olivia A Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kevin E W Namitz
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
4
|
Gao L, Zhou Y, Cao L, Cui X, Zheng Y, Yin H, Ai S. Photoelectrochemical Biosensor for Histone Deacetylase Sirt1 Detection Based on Polyaspartic Acid-Engaged and Triggered Redox Cycling Amplification and Enhanced Photoactivity of BiVO 4 by Gold Nanoparticles and SnS 2. Anal Chem 2022; 94:16936-16944. [PMID: 36416225 DOI: 10.1021/acs.analchem.2c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photoelectrochemical (PEC) biosensor was established for histone deacetylase Sirt1 detection based on the polyaspartic acid (PASP)-mediated redox cycling amplification and Sirt1 catalysis deacetylation-triggered recognition of the deacetylated substrate peptide, using PASP as the recognition reagent. After BiVO4 was composited with gold nanoparticles and SnS2, the photoactivity of the composite was greatly enhanced due to the matched energy band structure. Under the catalysis of Sirt1 enzyme, the acetylated substrate peptide was deacetylated to obtain a positive peptide, which was recognized by negative PASP. In addition to the recognition function, PASP also played other triple roles. First, PASP interacted with the positive peptide to form a double-stranded structure, which led to the electrode interface changing from irregular to regular, resulting in an improved PEC response. Second, PASP was involved into redox cycle amplification due to its reduction to dehydroascorbic acid. Further, it was used for repeated preparation of ascorbic acid to provide electron donors. This process enhanced the PEC response. Third, based on the matched energy band with BiVO4, PASP effectively improved the photoactivity of BiVO4. With multiplex signal amplification, the PEC biosensor showed a wide linear range (1.83-1830 pM) and high detection sensitivity with a low detection limit of 0.732 pM (S/N = 3). The applicability of this method was evaluated by studying the effects of a known inhibitor of nicotinamide and the heavy metal ions of Cd2+ and Pb2+ on Sirt1 enzyme activity, and the results showed that this method not only provided a new platform for screening Sirt1 enzyme inhibitors but also provided new biomarkers for evaluating the ecotoxicological effects of environmental pollutants.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| |
Collapse
|
5
|
Varga JK, Diffley K, Welker Leng KR, Fierke CA, Schueler-Furman O. Structure-based prediction of HDAC6 substrates validated by enzymatic assay reveals determinants of promiscuity and detects new potential substrates. Sci Rep 2022; 12:1788. [PMID: 35110592 PMCID: PMC8810773 DOI: 10.1038/s41598-022-05681-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylases play important biological roles well beyond the deacetylation of histone tails. In particular, HDAC6 is involved in multiple cellular processes such as apoptosis, cytoskeleton reorganization, and protein folding, affecting substrates such as ɑ-tubulin, Hsp90 and cortactin proteins. We have applied a biochemical enzymatic assay to measure the activity of HDAC6 on a set of candidate unlabeled peptides. These served for the calibration of a structure-based substrate prediction protocol, Rosetta FlexPepBind, previously used for the successful substrate prediction of HDAC8 and other enzymes. A proteome-wide screen of reported acetylation sites using our calibrated protocol together with the enzymatic assay provide new peptide substrates and avenues to novel potential functional regulatory roles of this promiscuous, multi-faceted enzyme. In particular, we propose novel regulatory roles of HDAC6 in tumorigenesis and cancer cell survival via the regulation of EGFR/Akt pathway activation. The calibration process and comparison of the results between HDAC6 and HDAC8 highlight structural differences that explain the established promiscuity of HDAC6.
Collapse
Affiliation(s)
- Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, POB 12272, 9112102, Jerusalem, Israel
| | - Kelsey Diffley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Katherine R Welker Leng
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, POB 12272, 9112102, Jerusalem, Israel.
| |
Collapse
|
6
|
Kutil Z, Mikešová J, Zessin M, Meleshin M, Nováková Z, Alquicer G, Kozikowski A, Sippl W, Bařinka C, Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS OMEGA 2019; 4:19895-19904. [PMID: 31788622 PMCID: PMC6882135 DOI: 10.1021/acsomega.9b02808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 05/05/2023]
Abstract
Histone deacetylase 11 (HDAC11) preferentially removes fatty acid residues from lysine side chains in a peptide or protein environment. Here, we report the development and validation of a continuous fluorescence-based activity assay using an internally quenched TNFα-derived peptide derivative as a substrate. The threonine residue in the +1 position was replaced by the quencher amino acid 3'-nitro-l-tyrosine and the fatty acyl moiety substituted by 2-aminobenzoylated 11-aminoundecanoic acid. The resulting peptide substrate enables fluorescence-based direct and continuous readout of HDAC11-mediated amide bond cleavage fully compatible with high-throughput screening formats. The Z'-factor is higher than 0.85 for the 15 μM substrate concentration, and the signal-to-noise ratio exceeds 150 for 384-well plates. In the absence of NAD+, this substrate is specific for HDAC11. Reevaluation of inhibitory data using our novel assay revealed limited potency and selectivity of known HDAC inhibitors, including Elevenostat, a putative HDAC11-specific inhibitor.
Collapse
Affiliation(s)
- Zsófia Kutil
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikešová
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Matthes Zessin
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marat Meleshin
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
| | - Zora Nováková
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Glenda Alquicer
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Alan Kozikowski
- StarWise
Therapeutics LLC, 505
S Rosa Road, Suite 27, Madison, Wisconsin 53719-1235, United States
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cyril Bařinka
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- E-mail: . Tel.: +420-325-873-777 (C.B.)
| | - Mike Schutkowski
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
- E-mail: . Tel.: +49-345-5524-828 (M.S.)
| |
Collapse
|
7
|
Zessin M, Kutil Z, Meleshin M, Nováková Z, Ghazy E, Kalbas D, Marek M, Romier C, Sippl W, Bařinka C, Schutkowski M. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry 2019; 58:4777-4789. [PMID: 31682411 DOI: 10.1021/acs.biochem.9b00786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Diana Kalbas
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Martin Marek
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Christophe Romier
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| |
Collapse
|
8
|
Leng KRW, Castañeda CA, Decroos C, Islam B, Haider SM, Christianson DW, Fierke CA. Phosphorylation of Histone Deacetylase 8: Structural and Mechanistic Analysis of the Phosphomimetic S39E Mutant. Biochemistry 2019; 58:4480-4493. [PMID: 31633931 PMCID: PMC6903415 DOI: 10.1021/acs.biochem.9b00653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn(II) vs Fe(II)], with the value of kcat/KM for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity.
Collapse
Affiliation(s)
| | - Carol Ann Castañeda
- Interdepartmental Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue 4008 Life Sciences Institute, Ann Arbor, MI 48109
| | - Christophe Decroos
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104
| | - Barira Islam
- School of Pharmacy, University College London, 29-39 Brunswick Square London, WC1N 1AX, UK
| | - Shozeb M. Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square London, WC1N 1AX, UK
| | - David W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
- Interdepartmental Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue 4008 Life Sciences Institute, Ann Arbor, MI 48109
- Department of Chemistry, Texas A&M University, Jack K. Williams Administration Building, Suite 100 College Station, TX 77843
| |
Collapse
|
9
|
Toro TB, Edenfield SA, Hylton BJ, Watt TJ. Chelatable trace zinc causes low, irreproducible KDAC8 activity. Anal Biochem 2018; 540-541:9-14. [PMID: 29100752 PMCID: PMC5712482 DOI: 10.1016/j.ab.2017.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022]
Abstract
Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data.
Collapse
Affiliation(s)
- Tasha B Toro
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Samantha A Edenfield
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Brandon J Hylton
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Terry J Watt
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| |
Collapse
|
10
|
Castañeda CA, Wolfson NA, Leng KR, Kuo YM, Andrews AJ, Fierke CA. HDAC8 substrate selectivity is determined by long- and short-range interactions leading to enhanced reactivity for full-length histone substrates compared with peptides. J Biol Chem 2017; 292:21568-21577. [PMID: 29109148 PMCID: PMC5766737 DOI: 10.1074/jbc.m117.811026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/05/2017] [Indexed: 01/03/2023] Open
Abstract
Histone deacetylases (HDACs) catalyze deacetylation of acetyl-lysine residues within proteins. To date, HDAC substrate specificity and selectivity have been largely estimated using peptide substrates. However, it is unclear whether peptide substrates accurately reflect the substrate selectivity of HDAC8 toward full-length proteins. Here, we compare HDAC8 substrate selectivity in the context of peptides, full-length proteins, and protein-nucleic acid complexes. We demonstrate that HDAC8 catalyzes deacetylation of tetrameric histone (H3/H4) substrates with catalytic efficiencies that are 40-300-fold higher than those for corresponding peptide substrates. Thus, we conclude that additional contacts with protein substrates enhance catalytic efficiency. However, the catalytic efficiency decreases for larger multiprotein complexes. These differences in HDAC8 substrate selectivity for peptides and full-length proteins suggest that HDAC8 substrate preference is based on a combination of short- and long-range interactions. In summary, this work presents detailed kinetics for HDAC8-catalyzed deacetylation of singly-acetylated, full-length protein substrates, revealing that HDAC8 substrate selectivity is determined by multiple factors. These insights provide a foundation for understanding recognition of full-length proteins by HDACs.
Collapse
Affiliation(s)
| | | | - Katherine R Leng
- Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Yin-Ming Kuo
- the Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | - Carol A Fierke
- From the Program in Chemical Biology and
- the Departments of Biological Chemistry and
- Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| |
Collapse
|
11
|
Lopez JE, Haynes SE, Majmudar JD, Martin BR, Fierke CA. HDAC8 Substrates Identified by Genetically Encoded Active Site Photocrosslinking. J Am Chem Soc 2017; 139:16222-16227. [PMID: 29035536 DOI: 10.1021/jacs.7b07603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The histone deacetylase family comprises 18 enzymes that catalyze deacetylation of acetylated lysine residues; however, the specificity and substrate profile of each isozyme remains largely unknown. Due to transient enzyme-substrate interactions, conventional co-immunoprecipitation methods frequently fail to identify enzyme-specific substrates. Additionally, compensatory mechanisms often limit the ability of knockdown or chemical inhibition studies to achieve significant fold changes observed by acetylation proteomics methods. Furthermore, measured alterations do not guarantee a direct link between enzyme and substrate. Here we present a chemical crosslinking strategy that incorporates a photoreactive, non-natural amino acid, p-benzoyl-l-phenylalanine, into various positions of the structurally characterized isozyme histone deacetylase 8 (HDAC8). After covalent capture, co-immunoprecipitation, and mass spectrometric analysis, we identified a subset of HDAC8 substrates from human cell lysates, which were further validated for catalytic turnover. Overall, this chemical crosslinking approach identified novel HDAC8-specific substrates with high catalytic efficiency, thus presenting a general strategy for unbiased deacetylase substrate discovery.
Collapse
Affiliation(s)
- Jeffrey E Lopez
- Program in Chemical Biology, ‡Department of Chemistry, and §Department of Biological Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sarah E Haynes
- Program in Chemical Biology, ‡Department of Chemistry, and §Department of Biological Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jaimeen D Majmudar
- Program in Chemical Biology, ‡Department of Chemistry, and §Department of Biological Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Brent R Martin
- Program in Chemical Biology, ‡Department of Chemistry, and §Department of Biological Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carol A Fierke
- Program in Chemical Biology, ‡Department of Chemistry, and §Department of Biological Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Castaneda CA, Lopez JE, Joseph CG, Scholle MD, Mrksich M, Fierke CA. Active Site Metal Identity Alters Histone Deacetylase 8 Substrate Selectivity: A Potential Novel Regulatory Mechanism. Biochemistry 2017; 56:5663-5670. [PMID: 28937750 DOI: 10.1021/acs.biochem.7b00851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.
Collapse
Affiliation(s)
- Carol Ann Castaneda
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jeffrey E Lopez
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Caleb G Joseph
- Department of Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Michael D Scholle
- Department of Chemistry and Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Chemistry and Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Carol A Fierke
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Chemistry and Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Toro TB, Bryant JR, Watt TJ. Lysine Deacetylases Exhibit Distinct Changes in Activity Profiles Due to Fluorophore Conjugation of Substrates. Biochemistry 2017; 56:4549-4558. [PMID: 28749131 PMCID: PMC5937523 DOI: 10.1021/acs.biochem.7b00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysine deacetylases (KDACs) are enzymes that reverse the post-translational modification of lysine acetylation. Thousands of potential substrates, acetylated protein sequences, have been identified in mammalian cells. Properly regulated acetylation and deacetylation have been linked to many biological processes, while aberrant KDAC activity has also been linked to numerous diseases. Commercially available peptide substrates that are conjugated to fluorescent dye molecules, such as 7-amino-4-methylcoumarin (AMC), are commonly used to monitor deacetylation in studies addressing both substrate specificity and small molecule modulators of activity. Here, we have compared the activity of several KDACs, representing all major classes of KDACs, with substrates in the presence and absence of AMC as well as peptides for which tryptophan has been substituted for AMC. Our results unequivocally demonstrate that AMC has a significant effect on activity for all KDACs tested. Furthermore, in neither the nature of the effect nor the magnitude is consistent across KDACs, making it impossible to predict the effect of AMC on a particular enzyme-substrate pair. AMC did not affect acetyllysine preference in a multiply acetylated substrate. In contrast, AMC significantly enhanced KDAC6 substrate affinity, greatly reduced Sirt1 activity, eliminated the substrate sequence specificity of KDAC4, and had no consistent effect with KDAC8 substrates. These results indicate that profiling of KDAC activity with labeled peptides is unlikely to produce biologically relevant data.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| | - Jenae R. Bryant
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| |
Collapse
|
14
|
Meyners C, Mertens M, Wessig P, Meyer-Almes FJ. A Fluorescence-Lifetime-Based Binding Assay for Class IIa Histone Deacetylases. Chemistry 2017; 23:3107-3116. [DOI: 10.1002/chem.201605140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Christian Meyners
- Fachbereich Chemie- und Biotechnologie; Hochschule Darmstadt; Haardtring 100 64295 Darmstadt Germany
| | - Monique Mertens
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Pablo Wessig
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Franz-Josef Meyer-Almes
- Fachbereich Chemie- und Biotechnologie; Hochschule Darmstadt; Haardtring 100 64295 Darmstadt Germany
| |
Collapse
|
15
|
Krämer A, Herzer J, Overhage J, Meyer-Almes FJ. Substrate specificity and function of acetylpolyamine amidohydrolases from Pseudomonas aeruginosa. BMC BIOCHEMISTRY 2016; 17:4. [PMID: 26956223 PMCID: PMC4784309 DOI: 10.1186/s12858-016-0063-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022]
Abstract
Background Pseudomonas aeruginosa, a Gram-negative, aerobic coccobacillus bacterium is an opportunistic human pathogen and worldwide the fourth most common cause of hospital-acquired infections which are often high mortality such as ventilator-associated pneumoniae. The polyamine metabolism of P. aeruginosa and particularly the deacetylation of acetylpolyamines has been little studied up to now. Results with other bacterial pathogens e.g., Y. pestis suggest that polyamines may be involved in the formation of biofilms or confer resistance against certain antibiotics. Results To elucidate the role of acetylpolyamines and their enzymatic deacetylation in more detail, all three putative acetylpolyamine amidohydrolases (APAHs) from P. aeruginosa have been expressed in enzymatic active form. The APAHs PA0321 and PA1409 are shown to be true polyamine deacetylases, whereas PA3774 is not able to deacetylate acetylated polyamines. Every APAH can hydrolyze trifluoroacetylated lysine-derivatives, but only PA1409 and much more efficiently PA3774 can also process the plain acetylated lysine substrate. P. aeruginosa is able to utilize acetylcadaverine and acetylputrescine as a carbon source under glucose starvation. If either the PA0321 or the PA1409 but not the PA3774 gene is disrupted, the growth of P. aeruginosa is reduced and delayed. In addition, we were able to show that the APAH inhibitors SAHA and SATFMK induce biofilm formation in both PA14 and PAO1 wildtype strains. Conclusions P. aeruginosa has two functional APAHs, PA0321 and PA1409 which enable the utilization of acetylpolyamines for the metabolism of P. aeruginosa. In contrast, the physiological role of the predicted APAH, PA3774, remains to be elucidated. Its ability to deacetylate synthetic acetylated lysine substrates points to a protein deacetylation functionality with yet unknown substrates. Electronic supplementary material The online version of this article (doi:10.1186/s12858-016-0063-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Krämer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295, Darmstadt, Germany
| | - Jan Herzer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76021, Karlsruhe, Germany
| | - Joerg Overhage
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76021, Karlsruhe, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295, Darmstadt, Germany.
| |
Collapse
|
16
|
Schuster S, Roessler C, Meleshin M, Zimmermann P, Simic Z, Kambach C, Schiene-Fischer C, Steegborn C, Hottiger MO, Schutkowski M. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions. Sci Rep 2016; 6:22643. [PMID: 26940860 PMCID: PMC4778124 DOI: 10.1038/srep22643] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD(+) dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1-6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M(-1)s(-1). These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM).
Collapse
Affiliation(s)
- Sabine Schuster
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 0610 Halle (Saale), Germany
| | - Claudia Roessler
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 0610 Halle (Saale), Germany
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 0610 Halle (Saale), Germany
| | - Philipp Zimmermann
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 0610 Halle (Saale), Germany
| | - Zeljko Simic
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 0610 Halle (Saale), Germany
| | - Christian Kambach
- Department of Biochemistry, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, joint research project gFP5, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 0610 Halle (Saale), Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Michael O Hottiger
- IVBMB, University of Zurich-Irchel, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 0610 Halle (Saale), Germany
| |
Collapse
|
17
|
Alam N, Zimmerman L, Wolfson NA, Joseph CG, Fierke CA, Schueler-Furman O. Structure-Based Identification of HDAC8 Non-histone Substrates. Structure 2016; 24:458-68. [PMID: 26933971 PMCID: PMC5590822 DOI: 10.1016/j.str.2016.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 11/17/2022]
Abstract
HDAC8 is a member of the family of histone deacetylases (HDACs) that catalyze the deacetylation of acetyl lysine residues within histone and non-histone proteins. The recent identification of novel non-histone HDAC8 substrates such as SMC3, ERRα, and ARID1A indicates a complex functionality of this enzyme in cellular homeostasis. To discover additional HDAC8 substrates, we developed a comprehensive, structure-based approach based on Rosetta FlexPepBind, a protocol that evaluates peptide-binding ability to a receptor from structural models of this interaction. Here we adapt this protocol to identify HDAC8 substrates using peptide sequences extracted from proteins with known acetylated sites. The many new in vitro HDAC8 peptide substrates identified in this study suggest that numerous cellular proteins are HDAC8 substrates, thus expanding our view of the acetylome and its regulation by HDAC8.
Collapse
Affiliation(s)
- Nawsad Alam
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Lior Zimmerman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Noah A Wolfson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Caleb G Joseph
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
18
|
Toro TB, Watt TJ. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay. Protein Sci 2015; 24:2020-32. [PMID: 26402585 DOI: 10.1002/pro.2813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/21/2015] [Accepted: 09/20/2015] [Indexed: 01/25/2023]
Abstract
Analysis of the human proteome has identified thousands of unique protein sequences that contain acetylated lysine residues in vivo. These modifications regulate a variety of biological processes and are reversed by the lysine deacetylase (KDAC) family of enzymes. Despite the known prevalence and importance of acetylation, the details of KDAC substrate recognition are not well understood. While several methods have been developed to monitor protein deacetylation, none are particularly suited for identifying enzyme-substrate pairs of label-free substrates across the entire family of lysine deacetylases. Here, we present a fluorescamine-based assay which is more biologically relevant than existing methods and amenable to probing substrate specificity. Using this assay, we evaluated the activity of KDAC8 and other lysine deacetylases, including a sirtuin, for several peptides derived from known acetylated proteins. KDAC8 showed clear preferences for some peptides over others, indicating that the residues immediately surrounding the acetylated lysine play an important role in substrate specificity. Steady-state kinetics suggest that the sequence surrounding the acetylated lysine affects binding affinity and catalytic rate independently. Our results provide direct evidence that potential KDAC8 substrates previously identified through cell based experiments can be directly deacetylated by KDAC8. Conversely, the data from this assay did not correlate well with predictions from previous screens for KDAC8 substrates using less biologically relevant substrates and assay conditions. Combining results from our assay with mass spectrometry-based experiments and cell-based experiments will allow the identification of specific KDAC-substrate pairs and lead to a better understanding of the biological consequences of these interactions.
Collapse
Affiliation(s)
- Tasha B Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana, 70125
| | - Terry J Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana, 70125
| |
Collapse
|
19
|
Roessler C, Tüting C, Meleshin M, Steegborn C, Schutkowski M. A Novel Continuous Assay for the Deacylase Sirtuin 5 and Other Deacetylases. J Med Chem 2015; 58:7217-23. [PMID: 26308971 DOI: 10.1021/acs.jmedchem.5b00293] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sirtuins are NAD(+) dependent lysine deacylases involved in many regulatory processes like control of metabolic pathways, DNA repair, and stress response. Modulators of sirtuin activity are needed as tools for uncovering the biological function of these enzymes and as potential therapeutics. Systematic discovery of such modulators is hampered by the lack of efficient and simple continuous activity assays running at low sirtuin concentrations in microtiter plates. Here we describe an improved continuous sirtuin 5 assay based on the coupling of the sirtuin reaction to a proteolytic cleavage using internally fluorescence-quenched substrates. Systematic optimization of a carbamoyl phosphate synthetase 1 derived, glutarylated peptide yielded a Sirt5 substrate with k(cat)/K(M) value of 337,000 M(-1) s(-1), which represents the best sirtuin substrate described so far. These extraordinary substrate properties allowed reliable determination of Ki values for different inhibitors in the presence of only 10 nM sirtuin in microtiter plate format. Assay conditions could be transferred effectively to other lysine deacetylases, like sirtuin 2 and sirtuin 3, which now enables more efficient development of sirtuin targeting drugs.
Collapse
Affiliation(s)
- Claudia Roessler
- Department of Enzymology, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Christian Tüting
- Department of Enzymology, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marat Meleshin
- Department of Enzymology, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth , Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Mike Schutkowski
- Department of Enzymology, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| |
Collapse
|