1
|
Baglia RA, Mills KR, Mitra K, Tutol JN, Ball D, Page KM, Kallu J, Gottipolu S, D'Arcy S, Nielsen SO, Dodani SC. An activity-based fluorescent sensor for the detection of the phenol sulfotransferase SULT1A1 in living cells. RSC Chem Biol 2021; 2:830-834. [PMID: 34212150 PMCID: PMC8190907 DOI: 10.1039/d0cb00231c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Human phenol sulfotransferases mediate the transfer of a sulfuryl moiety from the activated sulfate donor PAPS to hydroxy-containing substrates, altering substrate solubility and charge to affect phase II metabolism and cell signaling. Here, we present the development, computational modeling, in vitro enzymology, and biological application of STS-3, an activity-based fluorescent sensor for the SULT1A1 isoform.
Collapse
Affiliation(s)
- Regina A Baglia
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Kira R Mills
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Koushambi Mitra
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Darby Ball
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Kierstin M Page
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jyothi Kallu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sriharika Gottipolu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
2
|
Wei T, Wang F, Zhang Z, Qiang J, Lv J, Chen T, Li J, Chen X. Recent Progress in the Development of Fluorometric Chemosensors to Detect Enzymatic Activity. Curr Med Chem 2019; 26:3923-3957. [DOI: 10.2174/0929867325666180214105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/10/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022]
Abstract
Enzymes are a class of macromolecules that function as highly efficient and specific
biological catalysts requiring only mild reaction conditions. Enzymes are essential to
maintaining life activities, including promoting metabolism and homeostasis, and participating
in a variety of physiological functions. Accordingly, enzymatic levels and activity are
closely related to the health of the organism, where enzymatic dysfunctions often lead to corresponding
diseases in the host. Due to this, diagnosis of certain diseases is based on the levels
and activity of certain enzymes. Therefore, rapid real-time and accurate detection of enzymes
in situ are important for diagnosis, monitoring, clinical treatment and pathological
studies of disease. Fluorescent probes have unique advantages in terms of detecting enzymes,
including being simple to use in highly sensitive and selective real-time rapid in-situ noninvasive
and highly spatial resolution visual imaging. However, fluorescent probes are most
commonly used to detect oxidoreductases, transferases and hydrolases due to the processes
and types of enzyme reactions. This paper summarizes the application of fluorescent probes to
detect these three types of enzymes over the past five years. In addition, we introduce the
mechanisms underlying detection of these enzymes by their corresponding probes.
Collapse
Affiliation(s)
- Tingwen Wei
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Fang Wang
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Zhijie Zhang
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Jiang Qiang
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Jing Lv
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Tiantian Chen
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Jia Li
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Xiaoqiang Chen
- State Key laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Wang CC, Chen BH, Lu LY, Hung KS, Yang YS. Preparation of Tyrosylprotein Sulfotransferases for In Vitro One-Pot Enzymatic Synthesis of Sulfated Proteins/Peptides. ACS OMEGA 2018; 3:11633-11642. [PMID: 30320268 PMCID: PMC6173500 DOI: 10.1021/acsomega.7b01533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Protein tyrosine sulfation (PTS), catalyzed by membrane-anchored tyrosylprotein sulfotransferase (TPST), is one of the most common post-translational modifications of secretory and transmembrane proteins. PTS, a key modulator of extracellular protein-protein interactions, accounts for various important biological activities, namely, virus entry, inflammation, coagulation, and sterility. The preparation and characterization of TPST is fundamental for understanding the synthesis of tyrosine-sulfated proteins and for studying PTS in biology. A sulfated protein was prepared using a TPST-coupled protein sulfation system that involves the generation of the active sulfate 3'-phosphoadenosine-5'-phosphosulfate (PAPS) through either PAPS synthetase (PAPSS) or phenol sulfotransferase. The preparation of sulfated proteins was confirmed through radiometric or immunochemical assays. In this study, enzymatically active Drosophila melanogaster TPST (DmTPST) and human TPSTs (hTPST1 and hTPST2) were expressed in Escherichia coli BL21(DE3) host cells and purified to homogeneity in high yield. Our results revealed that recombinant DmTPST was particularly useful considering its catalytic efficiency and ease of preparation in large quantities. This study provides tools for high-efficiency, one-step synthesis of sulfated proteins and peptides that are useful for further deciphering the mechanisms, functions, and future applications of PTS.
Collapse
Affiliation(s)
- Chen-Chu Wang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Bo-Han Chen
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Lu-Yi Lu
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Kuo-Sheng Hung
- Department
of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, No.111, Section 3, Hsing-Long Road, Taipei 11696, Taiwan
| | - Yuh-Shyong Yang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| |
Collapse
|
4
|
New tools for evaluating protein tyrosine sulfation: tyrosylprotein sulfotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors. Biochem J 2018; 475:2435-2455. [PMID: 29934490 PMCID: PMC6094398 DOI: 10.1042/bcj20180266] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Protein tyrosine sulfation is a post-translational modification best known for regulating extracellular protein–protein interactions. Tyrosine sulfation is catalysed by two Golgi-resident enzymes termed tyrosylprotein sulfotransferases (TPSTs) 1 and 2, which transfer sulfate from the cofactor PAPS (3′-phosphoadenosine 5′-phosphosulfate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulfation assays has hampered the development of chemical biology approaches for the identification of small-molecule inhibitors of tyrosine sulfation. In the present paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulfation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set, we identified oxindole-based inhibitors of the Ser/Thr kinase RAF (rapidly accelerated fibrosarcoma) as low-micromolar inhibitors of TPST1 and TPST2. Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro. We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulfotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulfation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors.
Collapse
|
5
|
Structural basis for the broad substrate specificity of the human tyrosylprotein sulfotransferase-1. Sci Rep 2017; 7:8776. [PMID: 28821720 PMCID: PMC5562738 DOI: 10.1038/s41598-017-07141-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/22/2017] [Indexed: 11/08/2022] Open
Abstract
Tyrosylprotein sulfotransferases (TPSTs) are enzymes that catalyze post-translational tyrosine sulfation of proteins. In humans, there are only two TPST isoforms, designated TPST1 and TPST2. In a previous study, we reported the crystal structure of TPST2, which revealed the catalytic mechanism of the tyrosine sulfation reaction. However, detailed molecular mechanisms underlying how TPSTs catalyse a variety of substrate proteins with different efficiencies and how TPSTs catalyze the sulfation of multiple tyrosine residues in a substrate protein remain unresolved. Here, we report two crystal structures of the human TPST1 complexed with two substrate peptides that are catalysed by human TPST1 with significantly different efficiencies. The distinct binding modes found in the two complexes provide insight into the sulfation mechanism for these substrates. The present study provides valuable information describing the molecular mechanism of post-translational protein modifications catalysed by TPSTs.
Collapse
|
6
|
Zhou W, Wang Y, Xie J, Geraghty RJ. A fluorescence-based high-throughput assay to identify inhibitors of tyrosylprotein sulfotransferase activity. Biochem Biophys Res Commun 2017; 482:1207-1212. [DOI: 10.1016/j.bbrc.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
|
7
|
Plácido A, de Oliveira Farias EA, Marani MM, Vasconcelos AG, Mafud AC, Mascarenhas YP, Eiras C, Leite JR, Delerue-Matos C. Layer-by-layer films containing peptides of the Cry1Ab16 toxin from Bacillus thuringiensis for potential biotechnological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:832-41. [DOI: 10.1016/j.msec.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
|
8
|
Yang YS, Wang CC, Chen BH, Hou YH, Hung KS, Mao YC. Tyrosine sulfation as a protein post-translational modification. Molecules 2015; 20:2138-64. [PMID: 25635379 PMCID: PMC6272617 DOI: 10.3390/molecules20022138] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/06/2015] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS) is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST) through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.
Collapse
Affiliation(s)
- Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Chen-Chu Wang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Bo-Han Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - You-Hua Hou
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Kuo-Sheng Hung
- Department of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, Taipei 11696, Taiwan.
| | - Yi-Chih Mao
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| |
Collapse
|