1
|
Leng C, Sun S, Lin W, Pavon JA, Gennaro L, Gunawan RC, Bu X, Yang T, Li S. Imaged capillary isoelectric focusing method development for charge variants of high DAR ADCs. Anal Chim Acta 2024; 1328:343176. [PMID: 39266202 DOI: 10.1016/j.aca.2024.343176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Charge heterogeneity is a critical quality attribute for therapeutic biologics including antibody-drug conjugates (ADCs). Developing an ion exchange chromatography (IEX) or an imaged capillary isoelectric focusing (icIEF) method for ADCs with high drug-to-antibody ratio (DAR) is challenging because of the increased hydrophobicity from the payload-linker, DAR heterogeneity, and payload-linker instability. A sub-optimal method can be poorly stability-indicating due to the inability to discern contributions from charge and size variants conjugated with different number of drugs/payloads. Systematic strategy and guidance on charge variant method development is highly desired for high DAR ADCs with various complex structures. RESULTS This work encompasses the development and optimization of icIEF methods for high DAR ADCs of various DAR values (4-8) and payload linker chemistry. Method optimization focuses on improving resolution and stability indicating capabilities and differentiating contributions from the protein and payload-linker. Types, proportion, and combination of solubilizers and carrier ampholytes, as well as focusing parameters were interrogated. Our findings show that the structural units of the linker, the DAR, and the payload chemistry prescribe the selection of buffer, solubilizer, and ampholyte. We demonstrate that a stronger denaturant or solubilizer is needed for high DAR ADCs with polyethylene glycol (PEG)-containing linker structure compared to peptide linker. For unstable payload-linker, buffer system enhances sample stability which is vital to method robustness. In addition, a longer isoelectric focusing time is necessary for an ADC than its corresponding antibody to reach optimal focusing. SIGNIFICANCE To the best of our knowledge, this is the first comprehensive study on icIEF method development for charge variant determination of high DAR ADCs with unique physicochemical properties.
Collapse
Affiliation(s)
- Chuan Leng
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States.
| | - Shuwen Sun
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Wei Lin
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | | | - Lynn Gennaro
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Rico C Gunawan
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Xiaodong Bu
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Tong Yang
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| | - Senwu Li
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| |
Collapse
|
2
|
Meudt M, Pannek M, Glogowski N, Higel F, Thanisch K, Knape MJ. CE methods for charge variant analysis of mAbs and complex format biotherapeutics. Electrophoresis 2024; 45:1295-1306. [PMID: 38233206 DOI: 10.1002/elps.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Charge heterogeneity analysis of monoclonal antibodies (mAbs) and complex formats, such as bispecifics, is crucial for therapeutic applications. In this study, we developed two capillary electrophoresis (CE)-based methods, capillary zone electrophoresis (CZE) and imaged capillary isoelectric focusing (iCIEF), for analyzing a broad spectrum of mAbs and complex mAb formats. For CZE, we introduced a new buffer system and optimized the background electrolyte (BGE) with an alternative dynamic coating agent and a superior polymeric additive. The pH of the BGE was increased, leading to enhanced resolution of high pI and complex format mAbs. In iCIEF, we identified an ampholyte combination offering a highly linear pH gradient and covering a suitable pH range. We also investigated alternatives to denaturing stabilizers and found that non-detergent sulfobetaine 195 exhibited excellent properties for iCIEF applications. These optimized methods provide a framework for the charge heterogeneity analysis of therapeutic mAbs and complex formats.
Collapse
Affiliation(s)
- Maximilian Meudt
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Martin Pannek
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Rentschler Biopharma SE, Laupheim, Germany
| | - Nina Glogowski
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Fabian Higel
- Global CMC Experts NBE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Katharina Thanisch
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Matthias J Knape
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
3
|
Mai TH, Yadav R, Arjomandi A, Jung C, Meier MM, Donaldson F, Zhao R, Ding HT, Hsu JC, Kamath N, Pan L. Comparative Pharmacokinetics and Safety Assessment of 1st- and 2nd-Generation Zinpentraxin Alfa Drug Products in Healthy Volunteers: A Randomized Crossover Study. Clin Pharmacol Drug Dev 2024; 13:655-664. [PMID: 38651245 DOI: 10.1002/cpdd.1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
Zinpentraxin alfa is a recombinant form of the human pentraxin-2 that was studied in idiopathic pulmonary fibrosis (IPF). To improve the purity and yield of the drug material, a 2nd-generation drug product was developed. To characterize and compare the pharmacokinetic (PK) properties of the 1st- and 2nd-generation zinpentraxin alfa, PK studies were conducted in healthy volunteers (HVs). In a phase 1 randomized, double-blind, 2-sequence crossover, sequential 2-stage study (ISRCTN59409907), single intravenous (IV) doses of 1st- and 2nd-generation zinpentraxin alfa at 10 mg/kg were studied with a blinded interim analysis (IA) at the end of stage 1. Bioequivalence (BE) was achieved for the maximum observed plasma concentration (Cmax), but the overall exposure was higher for the 2nd- compared to the 1st-generation zinpentraxin alfa. The study was stopped after stage 1 as the gating criteria were met based on the result of the blinded IA. Safety profiles were similar for the 1st- and 2nd-generation drug products, and antidrug antibody (ADA) was not observed in this study.
Collapse
Affiliation(s)
- Tu H Mai
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | - Rui Zhao
- Bristol-Meyer Squibb, Redwood City, CA, USA
| | | | - Joy C Hsu
- Genentech, Inc., South San Francisco, CA, USA
| | | | - Lin Pan
- Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
4
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
5
|
Beyond PTMs: Novel Charge Variants Discovered in icIEF Profiling of PEGylated Proteins. Chromatographia 2022. [DOI: 10.1007/s10337-022-04215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Two quality and stability indicating imaged CIEF methods for mRNA vaccines. Electrophoresis 2022; 43:1971-1983. [DOI: 10.1002/elps.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/07/2022]
|
7
|
Mahmoud HE, El-Far SW, Embaby AM. Cloning, expression, and in silico structural modeling of cholesterol oxidase of Acinetobacter sp. strain RAMD in E. coli. FEBS Open Bio 2021; 11:2560-2575. [PMID: 34272838 PMCID: PMC8409315 DOI: 10.1002/2211-5463.13254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cholesterol oxidases (CHOXs) are flavin‐adenine dinucleotide‐dependent oxidoreductases with a range of biotechnological applications. There remains an urgent need to identify novel CHOX family members to meet the demands of enzyme markets worldwide. Here, we report the cloning, heterologous expression, and structural modeling of the cholesterol oxidase of Acinetobacter sp. strain RAMD. The cholesterol oxidase gene was cloned and expressed in pGEM®‐T and pET‐28a(+) vectors, respectively, using a gene‐specific primer based on the putative cholesterol oxidase ORF of Acinetobacter baumannii strain AB030 (GenBank [gb] locus tag: IX87_05230). The obtained nucleotide sequence (1671 bp, gb: MK575469.2), translated to a protein designated choxAB (556 amino acids), was overexpressed as inclusion bodies (IBs) (MW ˜ 62 kDa) in 1 mm IPTG‐induced Escherichia coli BL21 (DE3) Rosetta cells. The optimized expression conditions (1 mm IPTG with 2% [v/v] glycerol and at room temperature) yielded soluble active choxAB of 0.45 U·mL−1, with 56.25‐fold enhancement. The recombinant choxAB was purified to homogeneity using Ni2+‐affinity agarose column with specific activity (0.054 U·mg−1), yield (8.1%), and fold purification (11.69). Capillary isoelectric‐focusing indicated pI of 8.77 for choxAB. LC‐MS/MS confirmed the IBs (62 kDa), with 82.6% of the covered sequence being exclusive to A. baumannii cholesterol oxidase (UniProtKB: A0A0E1FG24). The 3D structure of choxAB was predicted using the LOMETS webtool with the cholesterol oxidase template of Streptomyces sp. SA‐COO (PDB: 2GEW). The predicted secondary structure included 18 α‐helices and 12 β‐strands, a predicted catalytic triad (E220, H380, and N514), and a conserved FAD‐binding sequence (GSGFGGSVSACRLTEKG). Future studies should consider fusion to solubilization tags and switching to the expression host Pichia pastoris to reduce IB formation.
Collapse
Affiliation(s)
- Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Shaymaa W El-Far
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Saudi Arabia
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| |
Collapse
|
8
|
Chialvo AA, Crisalle OD. Osmolyte-Induced Effects on the Hydration Behavior and the Osmotic Second Virial Coefficients of Alkyl-Substituted Urea Derivatives: Critical Assessment of Their Structure-Making/Breaking Behavior. J Phys Chem B 2021; 125:6231-6243. [PMID: 34086462 DOI: 10.1021/acs.jpcb.1c01855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We analyzed the hydration behavior of alkyl-substituted urea osmolytes in terms of their deviation from Lewis-Randall solution ideality and characterized their structure-making/breaking tendency according to a proposed solvation formalism that provides a rigorous cause-effect connection between the system microstructure and its solution thermodynamic nonidealities. After a brief introduction of the rationale behind the use of Lewis-Randall over alternative solution ideality references, we (i) assessed the effect of the nature and type of alkyl substitution on the osmolyte-induced perturbation of the solution microstructure as a function of composition, (ii) analyzed their microstructural responses to changes in temperature and pressure, and (iii) demonstrated the structure-breaking nature of urea and the magnifying behavior of its alkyl-substituted osmolytes, whose trend follows the increasingly positive deviation of the osmolyte solutions from Lewis-Randall ideality. Then, we discussed the falsifiability of a pair of frequently used conjectured structure-making/breaking criteria, supported by the derived exact relationships between the structure-making/breaking parameter, the solution thermodynamic nonideality, and the osmotic second virial coefficient of the aqueous osmolytes. Finally, we provided an outlook on how the proposed approach could guide the quest for a truly (microstructural to free energy) causative explanation for the denaturation mechanism of proteins.
Collapse
Affiliation(s)
| | - Oscar D Crisalle
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Minshull TC, Wood A, Roberts D, Hallam C, Lewis J, Orekoya A, Gervais D. Determination of extent of PEGylation using denaturing capillary isoelectric focussing. Anal Biochem 2020; 611:113953. [PMID: 32946834 DOI: 10.1016/j.ab.2020.113953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
|
10
|
Bone Morphogenetic Protein 2 (BMP-2) Aggregates Can be Solubilized by Albumin-Investigation of BMP-2 Aggregation by Light Scattering and Electrophoresis. Pharmaceutics 2020; 12:pharmaceutics12121143. [PMID: 33255722 PMCID: PMC7760923 DOI: 10.3390/pharmaceutics12121143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) has a high tendency to aggregate at physiological pH and physiological ionic strength, which can complicate the development of growth factor delivery systems. The aggregation behavior in differently concentrated BMP-2 solutions was investigated using dynamic and static light scattering. It was found that at higher concentrations larger aggregates are formed, whose size decreases again with increasing dilution. A solubilizing effect and therefore less aggregation was observed upon the addition of albumin. Imaged capillary isoelectric focusing and the simulation of the surface charges of BMP-2 were used to find a possible explanation for the unusually low solubility of BMP-2 at physiological pH. In addition to hydrophobic interactions, attractive electrostatic interactions might be decisive in the aggregation of BMP-2 due to the particular distribution of surface charges. These results help to better understand the solubility behavior of BMP-2 and thus support future pharmaceutical research and the development of new strategies for the augmentation of bone healing.
Collapse
|
11
|
Kanda P, Minshull TC. Determination of glycation levels in Erwinia chrysanthemi asparaginase drug product by liquid chromatography - mass spectrometry. Eur J Pharm Sci 2020; 145:105253. [PMID: 32027934 DOI: 10.1016/j.ejps.2020.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/09/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Erwinase (Erwinia chrysanthemi L-asparaginase) Drug Product (DP) is a freeze-dried formulation with a three-year shelf life at 2-8 °C, and an established safety, stability and efficacy profile over the more than three decades of clinical use. Seven Erwinase® DP batches, released over a 7-year period, were screened by reversed-phase liquid chromatography coupled to time-of-flight mass spectrometry for glycation levels. This modification is a known and natural consequence of exposure of Erwinase Drug Product to glucose excipients in stabilizing formulations. Although glycation is detected in current release and stability methods, glycation, including the conditions under which this reaction occurs, has not been previously characterised in detail. We have found that glycation levels of different DP lots generally correlated with age, when they were stored at low temperature. This suggests that the glycation reaction continues over time within the Drug Product formulation in the lyophilised state, even under low temperature (+2-8 °C) conditions. We were also able to examine glycation levels of one DP lot, Lot D, held under long term stability at 3 different temperatures over a 5-year period. The 2 samples held at -20 °C and -80 °C, were glycated to levels of 12% and 17%, respectively. However, the DP Lot D sample held at +2-8 oC in this time period was found to be glycated to a level of 35.6%, with multiple glycations of individual subunits observed. For analytical reference materials, it is important to keep parameters such as glycation levels as constant as possible, to avoid a 'moving target' with respect to comparisons with release and stability testing. These data suggest that storage of DP as reference standards at a lower temperature (e.g., -20 °C) can significantly reduce levels of glycation over the longer time periods required for analytical reference standards.
Collapse
Affiliation(s)
- Patrick Kanda
- Porton Biopharma Ltd., Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom.
| | - Thomas C Minshull
- Porton Biopharma Ltd., Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom
| |
Collapse
|
12
|
Gervais D. Acidic isoforms of Erwinase form part of the product: Correlation with clinical experience. Biologicals 2020; 64:28-33. [DOI: 10.1016/j.biologicals.2020.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/23/2023] Open
|
13
|
Comparison of imaged capillary isoelectric focusing and cation exchange chromatography for monitoring dextrose-mediated glycation of monoclonal antibodies in infusion solutions. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:156-163. [DOI: 10.1016/j.jchromb.2018.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022]
|
14
|
Development of a capillary zone electrophoresis method to quantify E. coli l-asparaginase and its acidic variants. Talanta 2018; 182:83-91. [DOI: 10.1016/j.talanta.2018.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 11/18/2022]
|
15
|
Belov AM, Viner R, Santos MR, Horn DM, Bern M, Karger BL, Ivanov AR. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2614-2634. [PMID: 28875426 PMCID: PMC5709234 DOI: 10.1007/s13361-017-1781-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 05/04/2023]
Abstract
Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Arseniy M Belov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - David M Horn
- Thermo Fisher Scientific, San Jose, CA, 95134, USA
| | | | - Barry L Karger
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Zhang X, Chemmalil L, Ding J, Mussa N, Li Z. Imaged capillary isoelectric focusing in native condition: A novel and successful example. Anal Biochem 2017; 537:13-19. [DOI: 10.1016/j.ab.2017.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
17
|
Structural Characterisation of Non-Deamidated Acidic Variants of Erwinia chrysanthemi L-asparaginase Using Small-Angle X-ray Scattering and Ion-Mobility Mass Spectrometry. Pharm Res 2015; 32:3636-48. [DOI: 10.1007/s11095-015-1722-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
|