1
|
Pathak A, Verma N, Tripathi S, Mishra A, Poluri KM. Nanosensor based approaches for quantitative detection of heparin. Talanta 2024; 273:125873. [PMID: 38460425 DOI: 10.1016/j.talanta.2024.125873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Heparin, being a widely employed anticoagulant in numerus clinical complications, requires strict quantification and qualitative screening to ensure the safety of patients from potential threat of thrombocytopenia. However, the intricacy of heparin's chemical structures and low abundance hinders the precise monitoring of its level and quality in clinical settings. Conventional laboratory assays have limitations in sensitivity and specificity, necessitating the development of innovative approaches. In this context, nanosensors emerged as a promising solution due to enhanced sensitivity, selectivity, and ability to detect heparin even at low concentrations. This review delves into a range of sensing approaches including colorimetric, fluorometric, surface-enhanced Raman spectroscopy, and electrochemical techniques using different types of nanomaterials, thus providing insights of its principles, capabilities, and limitations. Moreover, integration of smart-phone with nanosensors for point of care diagnostics has also been explored. Additionally, recent advances in nanopore technologies, artificial intelligence (AI) and machine learning (ML) have been discussed offering specificity against contaminants present in heparin to ensure its quality. By consolidating current knowledge and highlighting the potential of nanosensors, this review aims to contribute to the advancement of efficient, reliable, and economical heparin detection methods providing improved patient care.
Collapse
Affiliation(s)
- Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishchay Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Surface plasmon field enhanced upconversion luminescence for the screening and detection of phenolic environmental estrogens. Food Chem 2023; 413:135606. [PMID: 36773364 DOI: 10.1016/j.foodchem.2023.135606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
The endocrine system's interference caused by environmental estrogens (EEs) residue in food is a topic of public concern. Here, we construct an aptasensor for the sensitive detection of EEs based on luminescence resonance energy transfer (LRET). With MoS2 nanosheets acting as the energy acceptor and upconversion luminescence nanoparticles@gold nanoparticles (UCNPs@Au) as the luminescence donor, autofluorescence from food is prevented from interfering. The in-situ deposition of AuNPs not only induces local field enhancement to significantly increase the luminescence intensity of UCNPs, but also conduces to the modification of aptamer through Au-S bond. This aptasensor can respond to multiple estrogens thanks to the choice of a universal aptamer that recognizes phenolic hydroxyl group, and it offers the probability to screen unidentified phenolic estrogens. This method has a high sensitivity and a low limit of detection (LOD), and the satisfactory recovery rates acquired from water and milk samples confirmed its considerable application value.
Collapse
|
3
|
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. BIOSENSORS 2022; 12:1036. [PMID: 36421153 PMCID: PMC9688752 DOI: 10.3390/bios12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared-excited upconversion nanoparticles (UCNPs) have multicolor emissions, a low auto-fluorescence background, a high chemical stability, and a long fluorescence lifetime. The fluorescent probes based on UCNPs have achieved great success in the analysis of different samples. Here, we presented the research results of UCNPs probes utilized in analytical applications including environment, biology, food and medicine in the last five years; we also introduced the design and construction of upconversion optical sensing platforms. Future trends and challenges of the UCNPs used in the analytical field have also been discussed with particular emphasis.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoshuang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
4
|
An Ultrasensitive Upconversion Fluorescence Aptasensor Based on Graphene Oxide Release and Magnetic Separation for Staphylococcus aureus Detection. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
6
|
Wu J, Dai J, Zhao Y, Li J, Ju M, Zhang X, Shen B. Sensitive Detection of Protamine Based on a Yellow Emission Fluorophore. ChemistrySelect 2021. [DOI: 10.1002/slct.202102354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jichun Wu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Jianan Dai
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Yu Zhao
- Department of Food Science Cornell University Ithaca NY 14853 United States
| | - Jingmin Li
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Minzi Ju
- Department of Pharmacology Southeast University Nanjing Jiangsu 210009 China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan road China
| |
Collapse
|
7
|
Bao Q, Lin D, Gao Y, Wu L, Fu J, Galaa K, Lin X, Lin L. Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N,S-CDs and gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Zheng X, Dai J, Shen B, Zhang X. Quantitative determination of protamine using a fluorescent protein chromophore-based AIE probe. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Qu F, Yin T, Fa Q, Jiang D, Zhao XE. Lead halide perovskites with aggregation-induced emission feature coupled with gold nanoparticles for fluorescence detection of heparin. NANOTECHNOLOGY 2021; 32:235501. [PMID: 33621960 DOI: 10.1088/1361-6528/abe905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Herein, a new kind of lead halide perovskite (LHP, (C12H25NH3)2PbI4) with aggregation-induced emission (AIE) feature is developed as a fluorescent probe for heparin (Hep). The LHPs exhibit high emission when they aggregate in water. Interestingly, a few picomoles of dispersed gold nanoparticles (AuNPs) can quench the emission of LHPs, but the aggregated AuNPs are invalid. When protamine (Pro) is mixed with AuNPs at first, the negatively charged AuNPs aggregate through electrostatic interaction, producing the AIE recovery. Nevertheless, Hep disturbs the interaction between AuNPs and Pro due to its strong electrostatic interaction with Pro. Therefore, the dispersed AuNPs quench the fluorescence of LHPs again. A response linear range of Hep of 0.8-4.2 ng ml-1is obtained, and the detection limit is 0.29 ng ml-1. Compared with other probes for determination of Hep with AuNPs, this strategy exhibits better sensitivity due to the small quantity of AuNPs used. Finally, it is also successfully applied to detect Hep in human serum samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Tian Yin
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Qianqian Fa
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan 250014, People's Republic of China
| | - Xian-En Zhao
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| |
Collapse
|
11
|
Jouyban A, Rahimpour E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta 2020; 220:121383. [PMID: 32928407 DOI: 10.1016/j.talanta.2020.121383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Upconversion materials have been the focus of a large body of research in analytical and clinical fields in the last two decades owing to their ability to convert light between various spectral regions and their particular photophysical features. They emit efficient and sharp ultraviolet (UV) or visible luminescence after excitation with near-infrared (NIR) light. These features overcome some of the disadvantages reported for conventional fluorescent materials and provide opportunities for high sensitivity chemo-and bio-sensing. Here, we review studies that used upconversion materials as sensors for the determination of pharmaceuticals and biomolecules in the last two decades. The articles included in this review were retrieved from the SCOPUS database using the search phrases: "upconversion nanoparticles for determination of pharmaceutical compounds", and "upconversion nanoparticles for determination of biomolecules". Details of each developed upconversion nanoparticles based sensor along with their relevant analytical parameters are reported and carefully explained.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 1411713135, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
12
|
Qiao M, Lin L, Xia K, Li J, Zhang X, Linhardt RJ. Recent advances in biotechnology for heparin and heparan sulfate analysis. Talanta 2020; 219:121270. [PMID: 32887160 PMCID: PMC7474733 DOI: 10.1016/j.talanta.2020.121270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/07/2023]
Abstract
Heparan sulfate (HS) is a class of linear, sulfated, anionic polysaccharides, called glycosaminoglycans (GAGs), which present on the mammalian cell surfaces and extracellular matrix. HS GAGs display a wide range of critical biological functions, particularly in cell signaling. HS is composed of repeating units of 1 → 4 glucosidically linked uronic acid and glucosamine residues. Heparin, a pharmacologically important version of HS, having higher sulfation and a higher content of iduronic acid than HS, is a widely used clinical anticoagulant. However, due to their heterogeneity and complex structure, HS and heparin are very challenging to analyze, limiting biological studies and even resulting in safety concerns in their therapeutic application. Therefore, reliable methods of structural analysis of HS and heparin are critically needed. In addition to the structural analysis of heparin, its concentration in blood needs to be closely monitored to avoid complications such as thrombocytopenia or hemorrhage caused by heparin overdose. This review summarizes the progress in biotechnological approaches in the structural characterization of HS and heparin over the past decade and includes the development of the ultrasensitive approaches for detection and measurement in biological samples.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
13
|
Huang Q, Zhang J, Li W, Fu Y. A heparin-modified palladium nanozyme for photometric determination of protamine. Mikrochim Acta 2020; 187:226. [PMID: 32170394 DOI: 10.1007/s00604-020-4208-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Heparin was employed as the stabilizing agent in the synthesis of peroxidase-mimicking Pd nanoparticles. The heparin-capped Pd nanozyme can act as both the signal amplifier and the selective binder of protamine. The most efficient nanozyme with the mean size of 3.5 nm consists of 70.8% metallic Pd0 and 29.2% Pd2+ species. Enzyme kinetic studies show that the Km values are 0.036 mM for 3,3',5,5'-tetramethylbenzidine and 78 mM for H2O2. Protamine shows strong affinity to the heparin-capped Pd nanozyme, and induces an apparent aggregation of the nanoparticles. This results in a significant inhibition of the peroxidase-mimicking activities. Hence, the oxidation of TMB by H2O2 to a blue product with a maximum absorption at 652 nm is suppressed. Based on this finding, a photometric assay is developed for the determination of protamine. The linear response is in the concentration range 0.02 ~ 0.8 μg mL-1, and the limit of detection is 0.014 μg mL-1. This assay presents high selectivity toward other biological substances. Graphical abstract Highly active and selective Pd nanozyme was synthesized through adopting heparin as the capping agent for quantitative determination of protamine.
Collapse
Affiliation(s)
- Qingwei Huang
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jinli Zhang
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Wei Li
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| | - Yan Fu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
14
|
Ourri B, Vial L. Lost in (Clinical) Translation: Recent Advances in Heparin Neutralization and Monitoring. ACS Chem Biol 2019; 14:2512-2526. [PMID: 31682398 DOI: 10.1021/acschembio.9b00772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The heparin family, which includes unfractionated heparin, low-molecular heparin, and fondaparinux, is a class of drugs clinically used as intravenous blood thinners. To date, issues related to both the reversal of anticoagulation and the blood level determination of the anticoagulant at the point-of-care remain: while the only U.S. Food and Drug Administration (FDA) approved antidote for heparin displays serious efficacy and safety drawbacks, the current assays for heparin monitoring are indirect measurements subject to their own limitations and variations. Herein, we provide an update on the numerous recent chemical approaches to tackle these issues, from which it is clear that some new antidotes and sensors for heparin certainly have the potential to exceed current clinical standards. This review aims to review a field that requires close collaborations between physicians, biologists, and chemists in order to foster advances toward clinical translation.
Collapse
Affiliation(s)
- Benjamin Ourri
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Laurent Vial
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
15
|
Colorimetric and fluorometric aggregation-based heparin assay by using gold nanoclusters and gold nanoparticles. Mikrochim Acta 2019; 186:790. [DOI: 10.1007/s00604-019-3928-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
|
16
|
Rengaraj A, Haldorai Y, Hwang SK, Lee E, Oh MH, Jeon TJ, Han YK, Huh YS. A protamine-conjugated gold decorated graphene oxide composite as an electrochemical platform for heparin detection. Bioelectrochemistry 2019; 128:211-217. [PMID: 31030173 DOI: 10.1016/j.bioelechem.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
In this study, an effective electrochemical sensor was developed for heparin detection using a protamine-conjugated graphene oxide/gold (GO/Au) composite. Protamine is an antidote that can act as an affinity ligand for heparin. The GO was used as support for signal amplification, and Au nanoparticles (NPs) were employed to immobilize the protamine. This Au NPs also increasing the electron transfer rate and enhancing the signal response during protamine-heparin integration. The proposed affinity sensor had a simple fabrication process, a low detection limit (0.9 nM), a wide linear range (1.9 × 10-7 M to 1.5 × 10-9 M), high stability, and high selectivity in the detection of heparin.
Collapse
Affiliation(s)
- Arunkumar Rengaraj
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea; Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Seoung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Eunseon Lee
- Animal Production Research and Development Division, National Institute of Animal Science, Republic of Korea
| | - Mi-Hwa Oh
- Animal Production Research and Development Division, National Institute of Animal Science, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
17
|
Liang MY, Zhao B, Xiong Y, Chen WX, Huo JZ, Zhang F, Wang L, Li Y. A “turn-on” sensor based on MnO2coated UCNPs for detection of alkaline phosphatase and ascorbic acid. Dalton Trans 2019; 48:16199-16210. [DOI: 10.1039/c9dt02971k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A “turn-on” sensor was designed to detect ALP and AA based on the redox reaction between AA and MnO2coated UCNPs.
Collapse
Affiliation(s)
- Mei-yu Liang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Bing Zhao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Wen-xin Chen
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Jian-zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Fei Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Lu Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| |
Collapse
|
18
|
Peng J, Yin W, Shi J, Jin X, Ni G. Magnesium and nitrogen co-doped carbon dots as fluorescent probes for quenchometric determination of paraoxon using pralidoxime as a linker. Mikrochim Acta 2018; 186:24. [DOI: 10.1007/s00604-018-3147-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022]
|
19
|
Zhao L, Wang T, Wu Q, Liu Y, Chen Z, Li X. Fluorescent Strips of Electrospun Fibers for Ratiometric Sensing of Serum Heparin and Urine Trypsin. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3400-3410. [PMID: 28067489 DOI: 10.1021/acsami.6b14118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
"Turn-on" or "turn-off" probes remain challenges in the establishment of sensitive, easily operated, and reliable methods for in situ monitoring bioactive substances. In the current study, electrospun fibrous strips are designed to provide straightforward observations of ratiometric color changes with the naked eye in the presence of serum heparin or urine trypsin. A tetraphenylethene (TPE) derivative is constructed and along with phloxine B is grafted on fibers, followed by protamine adsorption to induce static quenching of phloxine B and aggregation-induced emission of the TPE derivative. The presence of heparin or trypsin removes protamine to restore the fluorescence of phloxine B at 574 nm (I574) and relieve the emission of the TPE derivative at 472 nm (I472). The grafting densities of phloxine B and the TPE derivative are essential to achieve the optimal fluorescence-intensity ratio of I574/I472 for the ratiometric detection of heparin and trypsin. Under illumination by an ultraviolet lamp, the fibrous mats turn from cyan to green in the presence of heparin at 0.4 U/mL and to a bright yellow at 0.8 U/mL, which is feasible in sensing serum heparin levels during postoperative and long-term care of patients after cardiovascular surgery. The protamine digestion results in similar color transitions with increasing trypsin levels up to 8 μg/mL, indicating the potential for monitoring urine trypsin levels of pancreas transplant patients. The color strips based on the ratiometric fluorescent response indicate advantages in lowering the detection limit and improving the accuracy and reproducibility, bearing great potential for a real-time and naked-eye detection of bioactive substances as self-test devices.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, PR China
| | - Tao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, PR China
| | - Qiang Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, PR China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, PR China
| | - Zhoujiang Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu 610031, PR China
| |
Collapse
|
20
|
Dong S, Liu X, Zhang Q, Zhao W, Zong C, Liang A, Gai H. Sensing Active Heparin by Counting Aggregated Quantum Dots at Single-Particle Level. ACS Sens 2017; 2:80-86. [PMID: 28722442 DOI: 10.1021/acssensors.6b00528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing highly sensitive and highly selective assays for monitoring heparin levels in blood is required during and after surgery. In previous studies, electrostatic interactions are exploited to recognize heparin and changes in light signal intensity are used to sense heparin. In the present study, we developed a quantum dot (QD) aggregation-based detection strategy to quantify heparin. When cationic micelles and fluorescence QDs modified with anti-thrombin III (AT III) are added into heparin sample solution, the AT III-QDs, which specifically bind with heparin, aggregate around the micelles. The aggregated QDs are recorded by spectral imaging fluorescence microscopy and differentiated from single QDs based on the asynchronous process of blue shift and photobleaching. The ratio of aggregated QD spots to all counted QD spots is linearly related to the amount of heparin in the range of 4.65 × 10 -4 U/mL to 0.023 U/mL. The limit of detection is 9.3 × 10 -5 U/mL (∼0.1 nM), and the recovery of the spiked heparin at 0.00465 U/mL (∼5 nM) in 0.1% human plasma is acceptable.
Collapse
Affiliation(s)
- Suli Dong
- Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, School
of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaojun Liu
- Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, School
of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qingquan Zhang
- Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, School
of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Wenfeng Zhao
- Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, School
of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chenghua Zong
- Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, School
of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Aiye Liang
- Department
of Physical Sciences, Charleston Southern University, Charleston, South Carolina 29406, United States
| | - Hongwei Gai
- Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, School
of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
21
|
Gong W, Wang S, Wei Y, Ding L, Fang Y. A pyrene-based fluorescent sensor for ratiometric detection of heparin and its complex with heparin for reversed ratiometric detection of protamine in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:198-205. [PMID: 27450118 DOI: 10.1016/j.saa.2016.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
An imidazolium-modified pyrene derivative, IPy, was used for ratiometric detection of heparin, and its complex with heparin was used for reversed ratiometric detection of protamine in both aqueous solution and serum samples. The cationic fluorescent probe could interact with anionic heparin via electrostatic interaction to bring about blue-to-green fluorescence changes as monomer emission significantly decreases and excimer increases. The binary combination of IPy and heparin could be further used for green-to-blue detection of protamine since heparin prefers to bind to protamine instead of the probe due to its stronger affinity with protamine. The cationic probe shows high sensitivity to heparin with a low detection limit of 8.5nM (153ng/mL) and its combination with heparin displays high sensitivity to protamine with a detection limit as low as 15.4nM (107.8ng/mL) according to the 3σ IUPAC criteria. Moreover, both sensing processes are fast and can be performed in serum solutions, indicating possibility for practical applications.
Collapse
Affiliation(s)
- Weiwei Gong
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Shihuai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yuting Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| |
Collapse
|
22
|
Liu J, Xu M, Wang B, Zhou Z, Wang L. Fluorescence sensor for detecting protamines based on competitive interactions of polyacrylic acid modified with sodium 4-amino-1-naphthalenesulfonate with protamines and aminated graphene oxide. RSC Adv 2017. [DOI: 10.1039/c6ra24793h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An easy-to-use fluorescent probe for detecting protamines was developed.
Collapse
Affiliation(s)
- Jinshui Liu
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Anhui Laboratory of Molecule-Based Materials
| | - Meijiao Xu
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Anhui Laboratory of Molecule-Based Materials
| | - Bin Wang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Anhui Laboratory of Molecule-Based Materials
| | - Zihan Zhou
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Anhui Laboratory of Molecule-Based Materials
| | - Lizhen Wang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Anhui Laboratory of Molecule-Based Materials
| |
Collapse
|
23
|
Qiao Y, Yao Z, Ge W, Zhang L, Wu HC. Rapid and visual detection of heparin based on the disassembly of polyelectrolyte-induced pyrene excimers. Org Biomol Chem 2017; 15:2569-2574. [DOI: 10.1039/c7ob00115k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A sensor based on polyelectrolyte-induced pyrene excimers has been developed for the visual detection of heparin with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Yadong Qiao
- School of Materials Science and Engineering Zhengzhou University
- Zhengzhou 450052
- China
| | - Zhiyi Yao
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Wenqi Ge
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Li Zhang
- School of Materials Science and Engineering Zhengzhou University
- Zhengzhou 450052
- China
| | - Hai-Chen Wu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
24
|
Li S, Gao M, Wang S, Hu R, Zhao Z, Qin A, Tang BZ. Light up detection of heparin based on aggregation-induced emission and synergistic counter ion displacement. Chem Commun (Camb) 2017; 53:4795-4798. [DOI: 10.1039/c7cc01602f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An easily accessible fluorescent light up probe HPQ-TBP-I is developed for sensitive and selective detection of heparin based on a synergistic strategy of aggregation-induced emission (AIE) and displacement of the fluorescence quencher iodide ion.
Collapse
Affiliation(s)
- Shiwu Li
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Meng Gao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Shuxia Wang
- Department of Nuclear Medicine
- Guangdong General Hospital
- Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
25
|
Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG. One-Step Synthesis of Water-Dispersible and Biocompatible Silicon Nanoparticles for Selective Heparin Sensing and Cell Imaging. Anal Chem 2016; 88:10474-10481. [DOI: 10.1021/acs.analchem.6b02448] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Su-dai Ma
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yong-lei Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Jie Feng
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Juan-juan Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xian-wei Zuo
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xing-guo Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou, 730000, China
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|