1
|
Chen ZZ, Dufresne J, Bowden P, Celej D, Miao M, Marshall JG. Micro scale chromatography of human plasma proteins for nano LC-ESI-MS/MS. Anal Biochem 2025; 697:115694. [PMID: 39442602 DOI: 10.1016/j.ab.2024.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Organic precipitation of proteins with acetonitrile demonstrated complete protein recovery and improved chromatography of human plasma proteins. The separation of 25 μL of human plasma into 22 fractions on a QA SAX resin facilitated more effective protein discovery despite the limited sample size. Micro chromatography of plasma proteins over quaternary amine (QA) strong anion exchange (SAX) resins performed best, followed by diethylaminoethyl (DEAE), heparin (HEP), carboxymethyl cellulose (CMC), and propyl sulfate (PS) resins. Two independent statistical methods, Monte Carlo comparison with random MS/MS spectra and the rigorous X!TANDEM goodness of fit algorithm protein p-values corrected to false discovery rate q-values (q ≤ 0.01) agreed on at least 12,000 plasma proteins, each represented by at least three fully tryptic corrected peptide observations. There was qualitative agreement on 9393 protein/gene symbols between the linear quadrupole versus orbital ion trap but also quantitative agreement with a highly significant linear regression relationship between log observation frequency (F value 4,173, p-value 2.2e-16). The use of a QA resin showed nearly perfect replication of all the proteins that were also found using DEAE-, HEP-, CMC-, and PS-based chromatographic methods combined and together estimated the size of the size of the plasma proteome as ≥12,000 gene symbols.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Dominika Celej
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
2
|
Mason ER, Soni DM, Chu S. Microglial Phagocytosis/Cell Health High-Content Assay. Curr Protoc 2023; 3:e724. [PMID: 36971657 PMCID: PMC10433541 DOI: 10.1002/cpz1.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We report a microglial phagocytosis/cell health high-content assay that has been used to test small molecule chemical probes and support our drug discovery projects targeting microglia for Alzheimer's disease therapy. The assay measures phagocytosis and cell health (cell count and nuclear intensity) simultaneously in 384-well plates processed with an automatic liquid handler. The mix-and-read live cell imaging assay is highly reproducible with capacity to meet drug discovery research needs. Assay procedures take 4 days including plating cells, treating cells, adding pHrodo-myelin/membrane debris to cells for phagocytosis, staining cell nuclei before performing high-content imaging, and analysis. Three selected parameters are measured from cells: 1) mean total fluorescence intensity per cell of pHrodo-myelin/membrane debris in phagocytosis vesicles to quantify phagocytosis; 2) cell counts per well (measuring compound effects on proliferation and cell death); and 3) average nuclear intensity (measuring compound induced apoptosis). The assay has been used on HMC3 cells (an immortalized human microglial cell line), BV2 cells (an immortalized mouse microglial cell line), and primary microglia isolated from mouse brains. Simultaneous measurements of phagocytosis and cell health allow for the distinction of compound effects on regulation of phagocytosis from cellular stress/toxicity related changes, a distinguishing feature of the assay. The combination of cell counts and nuclear intensity as indicators of cell health is also an effective way to measure cell stress and compound cytotoxicity, which may have broad applications as simultaneous profiling measurements for other phenotypic assays. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Microglial phagocytosis/cell health high-content assay protocol Support Protocol: Procedures to isolate myelin/membrane debris from mouse brain and label with pHrodo.
Collapse
Affiliation(s)
- Emily R Mason
- Division of Clinical Pharmacology, Department of Medicine, IUSM-Purdue TREAT-AD Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Disha M Soni
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shaoyou Chu
- Division of Clinical Pharmacology, Department of Medicine, IUSM-Purdue TREAT-AD Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
3
|
Doodnauth SA, Grinstein S, Maxson ME. Constitutive and stimulated macropinocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180147. [PMID: 30967001 DOI: 10.1098/rstb.2018.0147] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages respond to several stimuli by forming florid membrane ruffles that lead to fluid uptake by macropinocytosis. This type of induced macropinocytosis, executed by a variety of non-malignant and malignant cells, is initiated by transmembrane receptors and is involved in nutrient acquisition and mTOR signalling. However, macrophages also perform a unique type of constitutive ruffling and macropinocytosis that is dependent on the presence of extracellular calcium. Calcium-sensing receptors are responsible for this activity. This distinct form of macropinocytosis enables macrophages to continuously sample their microenvironment for antigenic molecules and for pathogen- and danger-associated molecular patterns, as part of their immune surveillance functions. Interestingly, even within the monocyte lineage, there are differences in macropinocytic ability that reflect the polarized functional roles of distinct macrophage subsets. This review discusses the shared and distinct features of both induced and constitutive macropinocytosis displayed by the macrophage lineage and their roles in physiology, immunity and pathophysiology. In particular, we analyse the role of macropinocytosis in the uptake of modified low-density lipoprotein (LDL) and its contribution to foam cell and atherosclerotic plaque formation. We propose a combined role of scavenger receptors and constitutive macropinocytosis in oxidized LDL uptake, a process we have termed 'receptor-assisted macropinocytosis'. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Sasha A Doodnauth
- 1 Princess Margaret Cancer Center, University Health Network , Toronto, ON , Canada M5G 1L7.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada M5G 1L7
| | - Sergio Grinstein
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4.,4 Department of Biochemistry, University of Toronto , 1 King's Circle, Toronto, ON , Canada M5S 1A8.,5 Keenan Research Centre of the Li Ka Shing Knowledge Institute , St. Michael's Hospital, 290 Victoria Street, Toronto, ON , Canada M5C 1N8
| | - Michelle E Maxson
- 3 Program in Cell Biology, Hospital for Sick Children , 686 Bay Street, Toronto, ON , Canada M5G 0A4
| |
Collapse
|
4
|
Fluorescent and mass spectrometric evaluation of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier. Anal Bioanal Chem 2019; 411:4193-4202. [PMID: 31093697 DOI: 10.1007/s00216-019-01825-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
Abstract
Ru(bpy)3@SiO2-COOH and Ru(bpy)3@SiO2@CD47-peptide nanoparticles (NPs) with fluorescent and mass spectrometric properties were designed and synthesized as the models of drug-nanocarriers. Their phagocytic internalization could be quantitatively measured using more sensitive inductively coupled plasma mass spectrometry (ICPMS) (102Ru) versus traditional laser confocal scanning microscope (λex/em = 458/600 nm) for the first time. Modification of a self-signal trigging CD47-peptide on the NPs' surface decreased internalization by 10 times, (2.79 ± 0.21) × 104 Ru(bpy)3@SiO2-COOH and (0.28 ± 0.04) × 104 Ru(bpy)3@SiO2@CD47-peptide NPs per RAW264.7 macrophage (n = 5). The alkynyl-linked CD47-peptide allowed us to quantify the number (2412 ± 250) of CD47-peptide modified on the NP and the total content (5.14 ± 0.25 amol) of signal regulatory protein α (SIRPα) on the macrophage by measuring the clickable tagged Eu using ICPMS. Furthermore, the interaction between CD47-peptide and SIRPα as well as the changes of the remaining free SIRPα during the internalization process of Ru(bpy)3@SiO2@CD47-peptide NPs were quantitatively evaluated, providing direct experimental evidence of the longspeculated crucial CD47-SIRPα interaction for drug-nanocarriers to escape internalization by phagocytic cells. Remarkable difference in the internalization ratio of 12.3 ± 4.8 of Ru(bpy)3@SiO2-COOH NPs and 4.3 ± 0.5 Ru(bpy)3@SiO2@CD47-peptide NPs with and without the protein corona indicated that CD47-peptide still worked when the protein corona formed. Not limited to the evaluation of the NPs studied here, such a fluorescent and mass spectrometric approach is very much expected to apply to the assessment of other drug-nanocarriers designed by chemists and before their medical applications. Graphical abstract.
Collapse
|
5
|
Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Sci Rep 2019; 9:4293. [PMID: 30862785 PMCID: PMC6414686 DOI: 10.1038/s41598-019-40223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
In assessing the potential of predatory bacteria, such as Bdellovibrio bacteriovorus, to become live therapeutic agents against bacterial infections, it is crucial to understand and quantify Bdellovibrio host cell interactions at a molecular level. Here, we quantify the interactions of live B. bacteriovorus with human phagocytic cells, determining the uptake mechanisms, persistence, associated cytokine responses and intracellular trafficking of the non-growing B. bacteriovorus in PMA-differentiated U937 cells. B. bacteriovorus are engulfed by U937 cells and persist for 24 h without affecting host cell viability and can be observed microscopically and recovered and cultured post-uptake. The uptake of predators is passive and depends on the dynamics of the host cell cytoskeleton; the engulfed predators are eventually trafficked through the phagolysosomal pathway of degradation. We have also studied the prevalence of B. bacteriovorus specific antibodies in the general human population. Together, these results quantify a period of viable persistence and the ultimate fate of B. bacteriovorus inside phagocytic cells. They provide new knowledge on predator availability inside hosts, plus potential longevity and therefore potential efficacy as a treatment in humans and open up future fields of work testing if predators can prey on host-engulfed pathogenic bacteria.
Collapse
|
6
|
Shiratori H, Feinweber C, Luckhardt S, Linke B, Resch E, Geisslinger G, Weigert A, Parnham MJ. THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol Immunol 2017; 88:58-68. [PMID: 28600970 DOI: 10.1016/j.molimm.2017.05.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/04/2023]
Abstract
Macrophages (Mφ) undergo activation to pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes in response to pathophysiologic stimuli and dysregulation of the M1-M2 balance is often associated with diseases. Therefore, studying mechanisms of macrophage polarization may reveal new drug targets. Human Mφ polarization is generally studied in primary monocyte-derived Mφ (PBMC Mφ) and THP-1-derived Mφ (THP-1 Mφ). We compared the polarization profile of THP-1 Mφ with that of PBMC Mφ to assess the alternative use of THP-1 for polarization studies. Cellular morphology, the expression profiles of 18 genes and 4 cell surface proteins, and phagocytosis capacity for apoptotic cells and S. aureus bioparticles were compared between these Mφ, activated towards M1, M2a, or M2c subsets by stimulation with LPS/IFNγ, IL-4, or IL-10, respectively, for 6h, 24h and 48h. The Mφ types are unique in morphology and basal expression of polarization marker genes, particularly CCL22, in a pre-polarized state, and were differentially sensitive to polarization stimuli. Generally, M1 markers were instantly induced and gradually decreased, while M2 markers were markedly expressed at a later time. Expression profiles of M1 markers were similar between the polarized Mφ types, but M2a cell surface markers demonstrated an IL-4-dependent upregulation only in PBMC Mφ. Polarized THP-1 Mφ but not PBMC Mφ showed distinctive phagocytic capacity for apoptotic cells and bacterial antigens, respectively. In conclusion, our data suggest that THP-1 may be useful for performing studies involving phagocytosis and M1 polarization, rather than M2 polarization.
Collapse
Affiliation(s)
- Hiromi Shiratori
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Carmen Feinweber
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Sonja Luckhardt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Bona Linke
- Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Timucin AC, Basaga H. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights. PLoS One 2016; 11:e0161494. [PMID: 27536992 PMCID: PMC4990240 DOI: 10.1371/journal.pone.0161494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/05/2016] [Indexed: 01/26/2023] Open
Abstract
SIRT6 is a protein deacetylase, involved in various intracellular processes including suppression of glycolysis and DNA repair. Aldose Reductase (AR), first enzyme of polyol pathway, was proposed to be indirectly associated to these SIRT6 linked processes. Despite these associations, presence of SIRT6 based regulation of AR still remains ambiguous. Thus, regulation of AR expression by SIRT6 was investigated under hyperosmotic stress. A unique model of osmotic stress in U937 cells was used to demonstrate the presence of a potential link between SIRT6 and AR expression. By overexpressing SIRT6 in HeLa cells under hyperosmotic stress, its role on upregulation of AR was revealed. In parallel, increased SIRT6 activity was shown to upregulate AR in U937 cells under hyperosmotic milieu by using pharmacological modulators. Since these modulators also target SIRT1, binding of the inhibitor, Ex-527, specifically to SIRT6 was analyzed in silico. Computational observations indicated that Ex-527 may also target SIRT6 active site residues under high salt concentration, thus, validating in vitro findings. Based on these evidences, a novel regulatory step by SIRT6, modifying AR expression under hyperosmotic stress was presented and its possible interactions with intracellular machinery was discussed.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
8
|
Howard JC, Florentinus-Mefailoski A, Bowden P, Trimble W, Grinstein S, Marshall JG. OxLDL receptor chromatography from live human U937 cells identifies SYK(L) that regulates phagocytosis of oxLDL. Anal Biochem 2016; 513:7-20. [PMID: 27510553 DOI: 10.1016/j.ab.2016.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
The binding and activation of macrophages by microscopic aggregates of oxLDL in the intima of the arteries may be an important step towards atherosclerosis leading to heart attack and stroke. Microbeads coated with oxLDL were used to activate, capture and isolate the oxLDL receptor complex from the surface of live cells. Analysis of the resulting tryptic peptides by liquid chromatography and tandem mass spectrometry revealed the Spleen Tyrosine Kinase (SYK), and many of SYK's known interaction network including Fc receptors (FCGR2A, FCER1G and FCGR1A) Toll receptor 4 (TLR4), receptor kinases like EGFRs, as well as RNA binding and metabolism proteins. High-intensity precursor ions (∼9*E3 to 2*E5 counts) were correlated to peptides and specific phosphopeptides from long isoform of SYK (SYK-L) by the SEQUEST, OMSSA and X!TANDEM algorithms. Peptides or phosphopeptides from SYK were observed with the oxLDL-microbeads. Pharmacological inhibitors of SYK activity significantly reduced the engulfment of oxLDL microbeads in the presence of serum factors, but had little effect on IgG phagocytosis. Anti SYK siRNA regulated oxLD engulfment in the context of serum factors and or SYK-L siRNA significantly inhibited engulfment of oxLDL microbeads, but not IgG microbeads.
Collapse
Affiliation(s)
- Jeffrey C Howard
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | | | - Peter Bowden
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - William Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - John G Marshall
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|