1
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Abbasi JA, Sadiq A, Ullah F, Nawaz A, Ullah I, Maaza M. Physicochemical and nanomedicine applications of phyto-reduced erbium oxide (Er 2O 3) nanoparticles. AMB Express 2023; 13:24. [PMID: 36840788 PMCID: PMC9968365 DOI: 10.1186/s13568-023-01527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Hyphaene thebaica fruits were used for the fabrication of spherical erbium oxide nanoparticles (HT-Er2O3 NPS) using a one-step simple bioreduction process. XRD pattern revealed a highly crystalline and pure phase with crystallite size of ~ 7.5 nm, whereas, the W-H plot revealed crystallite size of 11 nm. FTIR spectra revealed characteristic Er-O atomic vibrations in the fingerprint region. Bandgap was obtained as 5.25 eV using K-M function. The physicochemical and morphological nature was established using Raman spectroscopy, reflectance spectroscopy, SAED and HR-TEM. HT-Er2O3 NPS were further evaluated for antidiabetic potential in mice using in-vivo and in-vitro bioassays. The synthesized HT-Er2O3 NPS were screened for in vitro anti-diabetic potentials against α-glucosidase enzyme and α-amylase enzyme and their antioxidant potential was evaluated using DPPH free radical assay. A dose dependent inhibition was obtained against α-glucosidase (IC50 12 μg/mL) and α-amylase (IC50 78 μg/mL) while good DPPH free radical scavenging potential (IC50 78 μg mL-1) is reported. At 1000 μg/mL, the HT-Er2O3 NPS revealed 90.30% and 92.30% inhibition of α-amylase and α-glucosidase enzymes. HT-Er2O3 NPs treated groups were observed to have better glycemic control in diabetic animals (503.66 ± 5.92*** on day 0 and 185.66 ± 2.60*** on day 21) when compared with positive control glibenclamide treated group. Further, HT-Er2O3 NPS therapy for 21 days caused a considerable effect on serum total lipids, cholesterol, triglycerides, HDL and LDL as compared to untreated diabetic group. In conclusion, our preliminary findings on HT-Er2O3 NPS revealed considerable antidiabetic potential and thus can be an effective candidate for controlling the post-prandial hyperglycemia. However, further studies are encouraged especially taking into consideration the toxicity aspects of the nanomaterial.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, 25000 KP, Pakistan.
| | - Khaoula Hkiri
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000, Pakistan.
| | - Jamil Anwar Abbasi
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Abdul Sadiq
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Farhat Ullah
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Asif Nawaz
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Ikram Ullah
- grid.440530.60000 0004 0609 1900Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Mansehra, KP Pakistan
| | - Malik Maaza
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
2
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
3
|
Abstract
Phosphorylation is a reversible, enzyme-controlled posttranslational process affecting approximately one-third of all proteins in eukaryotic cells at any given time. Any deviation in the degree and/or site of phosphorylation leads to an abnormal conformation of proteins, resulting in a decline or loss of their function. Knowledge of phosphorylation-related pathways is essential for understanding the understanding of the disease pathogenesis and for the design of new therapeutic strategies. Recent availability of various kinases at an affordable price differs in activity, specificity, and stability and provides the opportunity of studying and modulating this reaction in vitro. We can exploit this knowledge for other applications. There is an enormous potential to produce fully decorated and active recombinant proteins, either for biomedical or cosmetic applications. Closely related is the possibility to exploit current achievements and develop new safe and efficacious vaccines, drugs, and immunomodulators. In this review, we outlined the current enzyme-based possibilities for in vitro phosphorylation of peptides and recombinant proteins and the added value that immobilized kinases provide.
Collapse
|
4
|
An improved amperometric determination of xanthine with xanthine oxidase nanoparticles for testing of fish meat freshness. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
5
|
Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:3038. [PMID: 33926034 PMCID: PMC8123588 DOI: 10.3390/s21093038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute for Research and Development in Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13676, USA;
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
6
|
Rawal R, Kharangarh PR, Dawra S, Bhardwaj P. Synthesis, characterization and immobilization of bilirubin oxidase nanoparticles (BOxNPs) with enhanced activity: Application for serum bilirubin determination in jaundice patients. Enzyme Microb Technol 2020; 143:109716. [PMID: 33375976 DOI: 10.1016/j.enzmictec.2020.109716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
A high- power ultrasonic method was used to prepare bilirubin oxidase nanoparticles (BOxNPs) which were immobilized on polyethylene (PE) film. The characterization of PE film bound to BOxNPs and BOxNPs was carried out using "Dynamic Light Scattering (DLS)," "Transmission Electron Microscopy (TEM)," and "Scanning Electron Microscopy (SEM)." The PE film was treated with nitric acid (HNO3) for its activation. BOxNPs bound to PE film exhibited optimal activity (pH-8), incubation time (11 s) with temperature 35 °C. A linear relationship was observed between the bilirubin concentrations (0.02-250 μM), with an apparent Km value and Vmax for PE- bound BOxNPs, at 0.015 μM and 2.56 μmol/mL/min. The mean recoveries of added serum bilirubin were 94.5 % at a level of 5 mM whereas 98.5 % were observed at 10 mM which showed the satisfactory reliability of BOxNPs immobilized on PE film. The coefficient of variation for serum bilirubin ranged between 4.52%-5.25%, measured on the first day (within batch) and after seven days of storage (between batch).This current method has showed a good correlation for bilirubin values when compared to the standard enzymatic colorimetric method using free enzyme. BOxNPs bound to PE film were reutilized 150 times with storage at 4 °C for 120 days.
Collapse
Affiliation(s)
- Rachna Rawal
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Poonam R Kharangarh
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Sudhir Dawra
- Department of Computer Science and Engineering, Mewat Engineering College, Mewat, Haryana, 122103, India
| | - Preetam Bhardwaj
- Centre for Nanotechnology Research, School of Electronics Engineering, Vellore Institute of Technology University, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
7
|
Ibadullaeva SZ, Appazov NO, Tarahovsky YS, Zamyatina EA, Fomkina MG, Kim YA. Amperometric Multi-Enzyme Biosensors: Development and Application, a Short Review. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Neelam, Chhillar AK, Rana JS. Enzyme nanoparticles and their biosensing applications: A review. Anal Biochem 2019; 581:113345. [DOI: 10.1016/j.ab.2019.113345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
|
9
|
Ono T, Sato K, Sasano Y, Yoshida K, Dairaku T, Iwabuchi Y, Kashiwagi Y. Electrochemical Detection of Triglycerides Based on an Enzymatic Reaction and Electrocatalytic Oxidation with Nortropine‐ N‐oxyl. ELECTROANAL 2019. [DOI: 10.1002/elan.201800660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tetsuya Ono
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| | - Katsuhiko Sato
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578 Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578 Japan
| | - Kentaro Yoshida
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| | - Takenori Dairaku
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578 Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical SciencesOhu University 31-1 Misumido Tomita-machi, Koriyama, Fukushima 963-8611 Japan
| |
Collapse
|
10
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
11
|
Hooda V, Gahlaut A, Gothwal A, Hooda V. Recent trends and perspectives in enzyme based biosensor development for the screening of triglycerides: a comprehensive review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:626-635. [DOI: 10.1080/21691401.2018.1465946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vinita Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | | - Ashish Gothwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
12
|
Jakhar S, Pundir C. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosens Bioelectron 2018; 100:242-250. [DOI: 10.1016/j.bios.2017.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
|
13
|
Biosensing methods for determination of triglycerides: A review. Biosens Bioelectron 2018; 100:214-227. [DOI: 10.1016/j.bios.2017.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 01/06/2023]
|
14
|
Abstract
A biosensor is a device composed by a biological recognition element and a transducer that delivers selective information about a specific analyte. Technological and scientific advances in the area of biology, bioengineering, catalysts, electrochemistry, nanomaterials, microelectronics, and microfluidics have improved the design and performance of better biosensors. Enzymatic biosensors based on lipases, esterases, and phospholipases are valuable analytical apparatus which have been applied in food industry, oleochemical industry, biodegradable polymers, environmental science, and overall the medical area as diagnostic tools to detect cholesterol and triglyceride levels in blood samples. This chapter reviews recent developments and applications of lipase-, esterase-, and phospholipase-based biosensors.
Collapse
Affiliation(s)
- Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Enrique J Herrera-López
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Zapopan, Jalisco, Mexico.
| |
Collapse
|
15
|
|
16
|
Chen M, Zeng G, Xu P, Lai C, Tang L. How Do Enzymes ‘Meet’ Nanoparticles and Nanomaterials? Trends Biochem Sci 2017; 42:914-930. [DOI: 10.1016/j.tibs.2017.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
17
|
Yadav N, Chhillar AK, Pundir CS. Preparation, characterization and application of haemoglobin nanoparticles for detection of acrylamide in processed foods. Int J Biol Macromol 2017; 107:1000-1013. [PMID: 28965965 DOI: 10.1016/j.ijbiomac.2017.09.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023]
Abstract
The nanoparticles of haemoglobin (HbNPs) were prepared by desolvation method and characterized by transmission electron microscopy (TEM),UV-vis spectroscopy, Fourier transformation infra red (FTIR) spectroscopy and X-ray diffraction (XRD) and atomic force microscopy (AFM). Protein profile of HbNPs was also studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). An amperometric acrylamide biosensor was constructed by immobilizing covalently HbNPs onto polycrystalline Au electrode. The Au electrode was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectra (EIS) before and after immobilization of HbNPs. The biosensor showed optimum current response within 2s at 0.26V, pH 5.0 at room temperature (20°C). The biosensor measured the acrylamide concentration in processed foods. The working range of biosensor was 0.1nm-100mM with a limit of detection (LOD) as low as 0.1nM. The biosensor measured acrylamide concentration in various processed foods such as biscuits, bread, potato crisps, "kurkure", nuts and fried cereals. The analytical recovery of added acrylamide in aqueous extract of food at 5 and 10mM was 99% and 98% respectively. Within-and between-batch, co-efficient of variations were 3.85% and 4.67% respectively. The structural analogs of acrylamide such as acrylic acid and propionic acid had practically no interference on the biosensor.
Collapse
Affiliation(s)
- Neelam Yadav
- Centre for Biotechnology, M.D.University, Rohtak-124001, Haryana, India
| | | | - Chandra S Pundir
- Department of Biochemistry, M.D.University, Rohtak-124001, Haryana, India.
| |
Collapse
|