1
|
Tang K, Dong J, Zheng Z, Zhang T, Pan H, Jia H, Li Y, Wei P. The rapid high-throughput screening of ω-transaminases via a colorimetric method using aliphatic α-diketones as amino acceptors. Anal Bioanal Chem 2023; 415:1733-1740. [PMID: 36840810 DOI: 10.1007/s00216-023-04573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
ω-Transaminases (ω-TAs) are widely available for the production of chiral amines and unnatural amino acids. Herein, a rapid spectrophotometric method was developed for screening ω-TAs based on the colored products that can be generated from transamination reactions between aliphatic α-diketones and amino donors catalyzed by ω-TAs. The possible mechanism of the formation of the colored product was investigated according to LC-Q-TOF-MS analysis. Among seven diketones, 2,3-butanedione was selected as the most suitable amino acceptor for colorimetric screening of ω-TAs with high efficiency, high sensitivity, and low background interference. Meanwhile, the absorbance of the colored product generated by 2,3-butanedione catalyzed by ω-TAs in this method was linearly correlated with the results by HPLC analysis. This method was also confirmed to effectively screen ω-TA mutants with high activity towards isopropylamine.
Collapse
Affiliation(s)
- Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiacheng Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhengheng Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Wang H, Tao Y, Masuku MV, Cao J, Yang J, Huang K, Ge Y, Yu Y, Xiao Z, Kuang Y, Huang J, Yang S. Effects of deep eutectic solvents on the biotransformation efficiency of ω-transaminase. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Czarnievicz N, Rubanu MG, Iturralde M, Albarran-Velo J, Diamanti E, Gotor-Fernandez V, Skolimowski M, López-Gallego F. A Multiplex Assay to Assess the Transaminase Activity toward Chemically Diverse Amine Donors. Chembiochem 2023; 24:e202200614. [PMID: 36385460 DOI: 10.1002/cbic.202200614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Indexed: 11/18/2022]
Abstract
The development of methods to engineer and immobilize amine transaminases (ATAs) to improve their functionality and operational stability is gaining momentum. The quest for robust, fast, and easy-to-use methods to screen the activity of large collections of transaminases, is essential. This work presents a novel and multiplex fluorescence-based kinetic assay to assess ATA activity using 4-dimethylamino-1-naphthaldehyde as an amine acceptor. The developed assay allowed us to screen a battery of amine donors using free and immobilized ATAs from different microbial sources as biocatalysts. As a result, using chromatographic methods, 4-hydroxybenzylamine was identified as the best amine donor for the amination of 5-(hydroxymethyl)furfural. Finally, we adapted this method to determine the apparent Michaelis-Menten parameters of a model immobilized ATA at the microscopic (single-particle) level. Our studies promote the use of this multiplex, multidimensional assay to screen ATAs for further improvement.
Collapse
Affiliation(s)
- Nicolette Czarnievicz
- Heterogeneous Biocatalysis Laboratory, Center for cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014, Donostia-San Sebastián, Spain.,Micronit BV, Colosseum 15, 7521 PV, Enschede (The, Netherlands.,University of Basque Country, (UPV/EHU), Donostia-San Sebastián, 20018, San Sebastián, Spain
| | - Maria Grazia Rubanu
- Heterogeneous Biocatalysis Laboratory, Center for cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014, Donostia-San Sebastián, Spain
| | - Maialen Iturralde
- Heterogeneous Biocatalysis Laboratory, Center for cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014, Donostia-San Sebastián, Spain
| | - Jesús Albarran-Velo
- Organic and Inorganic Chemistry Department, University of Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
| | - Eleftheria Diamanti
- Heterogeneous Biocatalysis Laboratory, Center for cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014, Donostia-San Sebastián, Spain
| | - Vicente Gotor-Fernandez
- Organic and Inorganic Chemistry Department, University of Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
| | | | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014, Donostia-San Sebastián, Spain.,lkerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
4
|
Shao F, Lee PW, Li H, Hsieh K, Wang TH. Emerging platforms for high-throughput enzymatic bioassays. Trends Biotechnol 2023; 41:120-133. [PMID: 35863950 PMCID: PMC9789168 DOI: 10.1016/j.tibtech.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Zhang J, Qi N, Gao L, Li J, Zhang C, Chang H. One-pot synthesis of (R)- and (S)-phenylglycinol from bio-based L-phenylalanine by an artificial biocatalytic cascade. BIORESOUR BIOPROCESS 2021; 8:97. [PMID: 38650191 PMCID: PMC10991228 DOI: 10.1186/s40643-021-00448-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022] Open
Abstract
Chiral phenylglycinol is a very important chemical in the pharmaceutical manufacturing. Current methods for synthesis of chiral phenylglycinol often suffered from unsatisfied selectivity, low product yield and using the non-renewable resourced substrates, then the synthesis of chiral phenylglycinol remain a grand challenge. Design and construction of synthetic microbial consortia is a promising strategy to convert bio-based materials into high value-added chiral compounds. In this study, we reported a six-step artificial cascade biocatalysis system for conversion of bio-based L-phenylalanine into chiral phenylglycinol. This system was designed using a microbial consortium including two engineered recombinant Escherichia coli cell modules, one recombinant E. coli cell module co-expressed six different enzymes (phenylalanine ammonia lyase/ferulic acid decarboxylase/phenylacrylic acid decarboxylase/styrene monooxygenase/epoxide hydrolase/alcohol dehydrogenase) for efficient conversion of L-phenylalanine into 2-hydroxyacetophenone. The second recombinant E. coli cell module expressed an (R)-ω-transaminase or co-expressed the (S)-ω-transaminase, alanine dehydrogenase and glucose dehydrogenase for conversion of 2-hydroxyacetophenone into (S)- or (R)-phenylglycinol, respectively. Combining the two engineered E. coli cell modules, after the optimization of bioconversion conditions (including pH, temperature, glucose concentration, amine donor concentration and cell ratio), L-phenylalanine could be easily converted into (R)-phenylglycinol and (S)-phenylglycinol with up to 99% conversion and > 99% ee. Preparative scale biotransformation was also conducted on 100-mL scale, (S)-phenylglycinol and (R)-phenylglycinol could be obtained in 71.0% and 80.5% yields, > 99% ee, and 5.19 g/L d and 4.42 g/L d productivity, respectively. The salient features of this biocatalytic cascade system are good yields, excellent ee, mild reaction condition and no need for additional cofactor (NADH/NAD+), provide a practical biocatalytic method for sustainable synthesis of (S)-phenylglycinol and (R)-phenylglycinol from bio-based L-phenylalanine.
Collapse
Affiliation(s)
- Jiandong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China.
| | - Ning Qi
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Lili Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Jing Li
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Chaofeng Zhang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Honghong Chang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
6
|
Winning the numbers game in enzyme evolution - fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol 2020; 63:123-133. [PMID: 32615371 DOI: 10.1016/j.sbi.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/02/2023]
Abstract
The booming demand for environmentally benign industrial processes relies on the ability to quickly find or engineer a biocatalyst suitable to ideal process conditions. Both metagenomic approaches and directed evolution involve the screening of huge libraries of protein variants, which can only be managed reasonably by flexible platforms for (ultra)high-throughput profiling against the desired criteria. Here, we review the most recent additions toward a growing toolbox of versatile assays using fluorescence, absorbance and mass spectrometry readouts. While conventional solution based high-throughput screening in microtiter plate formats is still important, the implementation of novel screening protocols for microfluidic cell or droplet sorting systems supports technological advances for ultra-high-frequency screening that now can dramatically reduce the timescale of engineering projects. We discuss practical issues of scope, scalability, sensitivity and stereoselectivity for the improvement of biotechnologically relevant enzymes from different classes.
Collapse
|
7
|
High throughput solid-phase screening of bacteria with cyclic amino alcohol deamination activity for enantioselective synthesis of chiral cyclic β-amino alcohols. Biotechnol Lett 2020; 42:1501-1511. [PMID: 32219689 DOI: 10.1007/s10529-020-02869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To screening of bacteria with cyclic amino alcohol deamination activity for enantioselective synthesis of chiral cyclic β-amino alcohols. RESULTS A new strain named Arthrobacter sp. TYUT010-15 with the (R)-selective deamination activity of cyclic β-amino alcohol has been isolated from nature via a high throughput solid-phase screening method. The reaction conditions of TYUT010-15 were optimized. Using the resting cell of TYUT010-15 as the catalyst, kinetic resolution of trans-2-aminocyclopentanol, trans-2-aminocyclohexanol and cis-1-amino-2-indanol was carried out to afford (1S, 2S)-trans-2-aminocyclopentanol, (1S, 2S)-trans-2-aminocyclohexanol and (1R, 2S)-cis-1-amino-2-indanol in > 99% ee and 49.6-50% conversion. Four aromatic β-amino alcohols and two amines were also resolved, (S)-β-amino alcohols and (R)-amines were obtained in > 99% ee. Preparation experiment was conducted with 200 mM (23.2 g L-1) racemic trans-2-aminocyclohexanol, yielding the desired (1S, 2S)-trans-2-aminocyclohexanol in 40% isolated yield, > 99% ee and 5.8 g L-1 d-1 space time yields. CONCLUSIONS This study provides a high throughput solid-phase method for screening of bacteria with cyclic amino alcohol deamination activity and a first example for practical preparation of chiral cyclic β-amino alcohol by Arthrobacter sp. TYUT010-15.
Collapse
|
8
|
Tong Q, Li Y, Wang S, Yan S. High-Throughput Screening of Streptomyces virginiae Strains Using Microtiter Plates for the High-Titer Production of Virginiamycin. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1700516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qianqian Tong
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yaliang Li
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Shunchang Wang
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Shoubao Yan
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
9
|
Chen FF, Cosgrove SC, Birmingham WR, Mangas-Sanchez J, Citoler J, Thompson MP, Zheng GW, Xu JH, Turner NJ. Enantioselective Synthesis of Chiral Vicinal Amino Alcohols Using Amine Dehydrogenases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03889] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sebastian C. Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - William R. Birmingham
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Juan Mangas-Sanchez
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Joan Citoler
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Matthew P. Thompson
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
10
|
Zhang J, Zhao J, Gao L, Zhao J, Chang H, Wei W. One‐Pot Three‐Step Consecutive Transformation of L‐α‐Amino Acids to (
R
)‐ and (
S
)‐Vicinal 1,2‐Diols via Combined Chemical and Biocatalytic Process. ChemCatChem 2019. [DOI: 10.1002/cctc.201901189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian‐Dong Zhang
- Department of Biological and Pharmaceutical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Jian‐Wei Zhao
- Department of Biological and Pharmaceutical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Li‐Li Gao
- Department of Environmental EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei University Hubei 430062 P.R. China
| | - Hong‐Hong Chang
- Department of Biological and Pharmaceutical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Wen‐Long Wei
- Department of Biological and Pharmaceutical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| |
Collapse
|
11
|
Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins. PLoS One 2019; 14:e0220318. [PMID: 31344098 PMCID: PMC6657890 DOI: 10.1371/journal.pone.0220318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope.
Collapse
|
12
|
Zhang JD, Yang XX, Jia Q, Zhao JW, Gao LL, Gao WC, Chang HH, Wei WL, Xu JH. Asymmetric ring opening of racemic epoxides for enantioselective synthesis of (S)-β-amino alcohols by a cofactor self-sufficient cascade biocatalysis system. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02377h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Asymmetric ring opening of racemic epoxides to enantiopure β-amino alcohols via a cascade biocatalysis system.
Collapse
Affiliation(s)
- Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Xiao-Xiao Yang
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Qiao Jia
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Jian-Wei Zhao
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Li-Li Gao
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - When-Chao Gao
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Hong-Hong Chang
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Wen-Long Wei
- Department of Biological and Pharmaceutical Engineering
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
13
|
Zhang JD, Zhao JW, Gao LL, Chang HH, Wei WL, Xu JH. Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. J Biotechnol 2019; 290:24-32. [DOI: 10.1016/j.jbiotec.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
|
14
|
Zhao JW, Wu HL, Zhang JD, Gao WC, Fan XJ, Chang HH, Wei WL, Xu JH. One pot simultaneous preparation of both enantiomer of β-amino alcohol and vicinal diol via cascade biocatalysis. Biotechnol Lett 2017; 40:349-358. [PMID: 29124518 DOI: 10.1007/s10529-017-2471-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the efficiency of a new cascade biocatalysis system for the conversion of R, S-β-amino alcohols to enantiopure vicinal diol and β-amino alcohol. RESULTS An efficient cascade biocatalysis was achieved by combination of a transaminase, a carbonyl reductase and a cofactor regeneration system. An ee value of > 99% for 2-amino-2-phenylethanol and 1-phenyl-1, 2-ethanediol were simultaneously obtained with 50% conversion from R, S-2-amino-2-phenylethanol. The generality of the cascade biocatalysis was further demonstrated with the whole-cell approaches to convert 10-60 mM R, S-β-amino alcohol to (R)- and (S)-diol and (R)- and (S)-β-amino alcohol in 90-99% ee with 50-52% conversion. Preparative biotransformation was demonstrated at a 50 ml scale with mixed recombinant cells to give both (R)- and (S)-2-amino-2-phenylethanol and (R)- and (S)-1-phenyl-1, 2-ethanediol in > 99% ee and 40-42% isolated yield from racemic 2-amino-2-phenylethanol. CONCLUSIONS This cascade biocatalysis system provides a new practical method for the simultaneous synthesis of optically pure vicinal diol and an β-amino alcohol.
Collapse
Affiliation(s)
- Jian-Wei Zhao
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Hua-Lei Wu
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China.
| | - Wen-Chao Gao
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Xiao-Jun Fan
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Hong-Hong Chang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Wen-Long Wei
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
15
|
Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02686] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Iustina Slabu
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - James L. Galman
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Richard C. Lloyd
- Dr.
Reddy’s Laboratories, Chirotech Technology Centre, CB4 0PE Cambridge, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|