1
|
Jin H, Jiang N, Xu W, Zhang Z, Yang Y, Zhang J, Xu H. Effect of flavonoids from Rhizoma Drynariae on osteoporosis rats and osteocytes. Biomed Pharmacother 2022; 153:113379. [DOI: 10.1016/j.biopha.2022.113379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022] Open
|
2
|
Impacts of Hypoxia on Osteoclast Formation and Activity: Systematic Review. Int J Mol Sci 2021; 22:ijms221810146. [PMID: 34576310 PMCID: PMC8467526 DOI: 10.3390/ijms221810146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/28/2023] Open
Abstract
Hypoxia is evident in several bone diseases which are characterized by excessive bone resorption by osteoclasts, the bone-resorbing cells. The effects of hypoxia on osteoclast formation and activities are widely studied but remain inconclusive. This systematic review discusses the studies reporting the effect of hypoxia on osteoclast differentiation and activity. A literature search for relevant studies was conducted through SCOPUS and PUBMED MEDLINE search engines. The inclusion criteria were original research articles presenting data demonstrating the effect of hypoxia or low oxygen on osteoclast formation and activity. A total of 286 studies were identified from the search, whereby 20 studies were included in this review, consisting of four in vivo studies and 16 in vitro studies. In total, 12 out of 14 studies reporting the effect of hypoxia on osteoclast activity indicated higher bone resorption under hypoxic conditions, 14 studies reported that hypoxia resulted in more osteoclasts, one study found that the number remained unchanged, and five studies indicated that the number decreased. In summary, examination of the relevant literature suggests differences in findings between studies, hence the impact of hypoxia on osteoclasts remains debatable, even though there is more evidence to suggest it promotes osteoclast differentiation and activity.
Collapse
|
3
|
Wheelis SE, Biguetti CC, Natarajan S, Arteaga A, Allami JE, Chandrashekar BL, Garlet G, Rodrigues DC. Cellular and Molecular Dynamics during Early Oral Osseointegration: A Comprehensive Characterization in the Lewis Rat. ACS Biomater Sci Eng 2021; 7:2392-2407. [PMID: 33625829 PMCID: PMC8796703 DOI: 10.1021/acsbiomaterials.0c01420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE There is a need to improve the predictability of osseointegration in implant dentistry. Current literature uses a variety of in vivo titanium (Ti) implantation models to investigate failure modes and test new materials and surfaces. However, these models produce a variety of results, making comparison across studies difficult. The purpose of this study is to validate an oral osseointegration in the Lewis rat to provide a reproducible baseline to track the inflammatory response and healing of Ti implants. METHODS Ti screws (0.76 mm Ø × 2 mm length) were implanted into the maxillary diastema of 52 adult male Lewis rats. Peri-implant tissues were evaluated 2, 7, 14, and 30 days after implantation (n = 13). Seven of the 13 samples underwent microtomographic analysis, histology, histomorphometry, and immunohistochemistry to track healing parameters. The remaining six samples underwent quantitative polymerase chain reaction (qPCR) to evaluate gene expression of inflammation and bone remodeling markers over time. RESULTS This model achieved a 78.5% success rate. Successful implants had a bone to implant contact (BIC)% of 68.86 ± 3.15 at 30 days on average. Histologically, healing was similar to other rodent models: hematoma and acute inflammation at 2 days, initial bone formation at 7, advanced bone formation and remodeling at 14, and bone maturation at 30. qPCR indicated the highest expression of bone remodeling and inflammatory markers 2-7 days, before slowly declining to nonsurgery control levels at 14-30 days. CONCLUSION This model combines cost-effectiveness and simplicity of a rodent model, while maximizing BIC, making it an excellent candidate for evaluation of new surfaces.
Collapse
Affiliation(s)
| | | | - Shruti Natarajan
- Department of Biological Sciences, University of Texas at Dallas
- Texas A&M College of Dentistry
| | | | | | | | - Gustavo Garlet
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo São Paulo, Brazil
| | | |
Collapse
|
4
|
Characterization of Macrophages and Osteoclasts in the Osteosarcoma Tumor Microenvironment at Diagnosis: New Perspective for Osteosarcoma Treatment? Cancers (Basel) 2021; 13:cancers13030423. [PMID: 33498676 PMCID: PMC7866157 DOI: 10.3390/cancers13030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Due to the great genetic instability of osteosarcoma (OS), a recurrent molecular therapeutic target has not been identified to date. Therefore, characterization of the OS tumor microenvironment (TME) might offer new therapeutic perspectives. The OS2006 trial, originally designed to evaluate the impact of zoledronic acid (ZA, osteoclast-inhibitor) addition to conventional OS-therapies, was ended preliminary due to a negative impact on patient survival. Through retrospective biomarker analysis of the unique biological samples collected during the trial, we demonstrate here that ZA not only acts on harmful osteoclasts but also on protective macrophages, clarifying its detrimental effect. By multiplex immunohistochemistry, applied on additional OS biopsies, an important bipotent macrophage-population (CD168+/CD163+), homogenously distributed throughout OS tumor areas, was identified. These bipotent cells might play a determining role in the evolution of OS and offer a novel therapeutic approach. A clear definition of the macrophage populations present at diagnosis could re-enforce therapeutic decisions. Abstract Biological and histopathological techniques identified osteoclasts and macrophages as targets of zoledronic acid (ZA), a therapeutic agent that was detrimental for patients in the French OS2006 trial. Conventional and multiplex immunohistochemistry of microenvironmental and OS cells were performed on biopsies of 124 OS2006 patients and 17 surgical (“OSNew”) biopsies respectively. CSF-1R (common osteoclast/macrophage progenitor) and TRAP (osteoclast activity) levels in serum of 108 patients were correlated to response to chemotherapy and to prognosis. TRAP levels at surgery and at the end of the protocol were significantly lower in ZA+ than ZA− patients (padj = 0.0011; 0.0132). For ZA+-patients, an increase in the CSF-1R level between diagnosis and surgery and a high TRAP level in the serum at biopsy were associated with a better response to chemotherapy (p = 0.0091; p = 0.0251). At diagnosis, high CD163+ was associated with good prognosis, while low TRAP activity was associated with better overall survival in ZA− patients only. Multiplex immunohistochemistry demonstrated remarkable bipotent CD68+/CD163+ macrophages, homogeneously distributed throughout OS regions, aside osteoclasts (CD68+/CD163−) mostly residing in osteolytic territories and osteoid-matrix-associated CD68−/CD163+ macrophages. We demonstrate that ZA not only acts on harmful osteoclasts but also on protective macrophages, and hypothesize that the bipotent CD68+/CD163+ macrophages might present novel therapeutic targets.
Collapse
|
5
|
Wang XM, Liu H, Li JY, Wei JX, Li X, Zhang YL, Li LZ, Zhang XZ. Rosamultin Attenuates Acute Hypobaric Hypoxia-Induced Bone Injuries by Regulation of Sclerostin and Its Downstream Signals. High Alt Med Biol 2020; 21:273-286. [PMID: 32598190 DOI: 10.1089/ham.2019.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wang, Xing-Min, Hui Liu, Jian-Yu Li, Jin-Xia Wei, Xia Li, Yong-Liang Zhang, Ling-Zhi Li, and Xi-Zheng Zhang. Rosamultin attenuates acute hypobaric hypoxia-induced bone injuries by regulation of sclerostin and its downstream signals. High Alt Med Biol. 21:273-286, 2020. Background: Rosamultin, one of the compounds extracted from Potentilla anserina L., exhibited significant pharmacological activity against oxidative stress and hypoxic injury in our previous study. However, the effect of rosamultin on bone damage induced by acute hypobaric hypoxia (HH) has not been thoroughly studied. Methods: In this study, we first investigated the protective effect of rosamultin against bone damage in rats following acute exposure to simulated high-altitude hypoxia. Furthermore, we explored the detailed mechanism involved in the regulation of rat bone remodeling by rosamultin in an acute HH environment through analysis of sclerostin expression and the regulation of downstream signaling pathways. Results: Pretreatment with rosamultin significantly reduced HH-induced oxidative stress and inflammation, improved bone metabolic abnormalities, and alleviated the imbalance in bone remodeling in rats exposed to acute HH. Rosamultin markedly downregulated the expression of sclerostin, activated the Wnt/β-catenin signaling pathway, and enhanced the ratio of osteoprotegerin/receptor activator of nuclear factor kappa B ligand to maintain the balance of bone formation and resorption. Conclusions: Rosamultin attenuates acute HH-induced bone damage and improves abnormal bone remodeling in rats by inhibition of sclerostin expression and activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xing-Min Wang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Hui Liu
- Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Third Central Hospital, Nankai University, Tianjin, China
| | - Jian-Yu Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China.,Key Laboratory of Interforce Functionality and Personalization of Bone Implants, Tianjin, China
| | - Jin-Xia Wei
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Xia Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Yong-Liang Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China
| | - Ling-Zhi Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China
| | - Xi-Zheng Zhang
- Key Laboratory of Interforce Functionality and Personalization of Bone Implants, Tianjin, China.,Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin, China
| |
Collapse
|
6
|
Solakoglu Ö, Götz W, Heydecke G, Schwarzenbach H. Histological and immunohistochemical comparison of two different allogeneic bone grafting materials for alveolar ridge reconstruction: A prospective randomized trial in humans. Clin Implant Dent Relat Res 2019; 21:1002-1016. [PMID: 31424173 PMCID: PMC6899623 DOI: 10.1111/cid.12824] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Background Preclinical studies have hypothesized a possible immunological reponse to allogeneic materials due to detection of remnants of potential immunogenic molecules. However, their impact on integration, bone remodeling and immunological reaction after the augmentation procedure is largely unknown and a direct correlation of analytical data and evaluation of human biopsies is missing. Purpose The present study aimed to compare two commercially available allogeneic materials regarding their content of cellular remnants as well as the bone remodeling, and integration and potential immunologic reactions on a histological and immunohistochemical level, integrating also in vitro analytical evaluation of the specific batches that were used clinically. Materials and Methods Twenty patients were randomly assigned to treatment with Maxgraft or Puros for lateral ridge augmentation in a two‐stage surgery. After a mean healing period of 5 months, implants were placed and biopsies were taken for histological, immunhistochemical, and histomorphometrical evaluation regarding bone remodeling and inflammation, protein concentrations in vitro and the presence of MHC molecules of the same batches used clinically. Results No differences in clinical outcome, histological, immunohistochemical, and in vitro protein analysis between the two bone grafting materials were observed. Active bone remodeling, amount of newly formed bone, and residual grafting material was independent of the materials used, but varied between subjects. MHC1 residues were not detected in any sample. Conclusions Within the limitations of this study, both tested materials yielded equivalent results in terms of clinical outcome, new bone formation, and lack of immunological potential on a histological and immunohistochemical level.
Collapse
Affiliation(s)
- Önder Solakoglu
- Dental Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Specialty Dental Practice limited to Periodontology and Implant Dentistry, FPI-Hamburg, Germany, Hamburg
| | - Werner Götz
- Laboratory for Oral Biologic Basic Science, Department of Orthodontics, University of Bonn, Bonn, Germany
| | - Guido Heydecke
- Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heidi Schwarzenbach
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Diepenhorst NA, Leach K, Keller AN, Rueda P, Cook AE, Pierce TL, Nowell C, Pastoureau P, Sabatini M, Summers RJ, Charman WN, Sexton PM, Christopoulos A, Langmead CJ. Divergent effects of strontium and calcium-sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity. Br J Pharmacol 2018; 175:4095-4108. [PMID: 29714810 DOI: 10.1111/bph.14344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Strontium ranelate, a drug approved and until recently used for the treatment of osteoporosis, mediates its effects on bone at least in part via the calcium-sensing (CaS) receptor. However, it is not known whether bone-targeted CaS receptor positive allosteric modulators (PAMs; calcimimetics) represent an alternative (or adjunctive) therapy to strontium (Sr2+ o ). EXPERIMENTAL APPROACH We assessed three structurally distinct calcimimetics [cinacalcet, AC-265347 and a benzothiazole tri-substituted urea (BTU-compound 13)], alone and in combination with extracellular calcium (Ca2+ o ) or Sr2+ o , in G protein-dependent signalling assays and trafficking experiments in HEK293 cells and their effects on cell differentiation, tartrate-resistant acid phosphatase (TRAP) activity and hydroxyapatite resorption assays in human blood-derived osteoclasts. KEY RESULTS Sr2+ o activated CaS receptor-dependent signalling in HEK293 cells in a similar manner to Ca2+ o , and inhibited the maturation, TRAP expression and hydroxyapatite resorption capacity of human osteoclasts. Calcimimetics potentiated Ca2+ o - and Sr2+ o -mediated CaS receptor signalling in HEK293 cells with distinct biased profiles, and only cinacalcet chaperoned an endoplasmic reticulum-retained CaS mutant receptor to the cell surface in HEK293 cells, indicative of a conformational state different from that engendered by AC-265347 and BTU-compound 13. Intriguingly, only cinacalcet modulated human osteoclast function, reducing TRAP activity and profoundly inhibiting resorption. CONCLUSION AND IMPLICATIONS Although AC-265347 and BTU-compound 13 potentiated Ca2+ o - and Sr2+ o -induced CaS receptor activation, they neither replicated nor potentiated the ability of Sr2+ o to inhibit human osteoclast function. In contrast, the FDA-approved calcimimetic, cinacalcet, inhibited osteoclast TRAP activity and hydroxyapatite resorption, which may contribute to its clinical effects on bone mineral density LINKED ARTICLES: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Natalie A Diepenhorst
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patricia Rueda
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Anna E Cook
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Tracie L Pierce
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - William N Charman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|