1
|
Kalogeropoulou E, Aliferis KA, Tjamos SE, Vloutoglou I, Paplomatas EJ. Combined Transcriptomic and Metabolomic Analysis Reveals Insights into Resistance of Arabidopsis bam3 Mutant against the Phytopathogenic Fungus Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2022; 11:3457. [PMID: 36559570 PMCID: PMC9785915 DOI: 10.3390/plants11243457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The wilt-inducing strains of Fusarium oxysporum are responsible for severe damage to many economically important plant species. The most cost-effective and environmentally safe method for the management of Fusarium wilt is the use of resistant cultivars when they are available. In the present study, the Arabidopsis genotype with disruptions in the β-amylase 3 (BAM3) gene, which encodes the major hydrolytic enzyme that degrades starch to maltose, had significantly lower susceptibility to Fusarium oxysporum f. sp. raphani (For) compared to wild-type (wt) plants. It showed the lowest disease severity and contained reduced quantities of fungal DNA in the plant vascular tissues when analyzed with real-time PCR. Through metabolomic analysis using gas chromatography (GC)-mass spectrometry (MS) and gene-expression analysis by reverse-transcription quantitative PCR (RT-qPCR), we observed that defense responses of Arabidopsis bam3 mutants are associated with starch-degradation enzymes, the corresponding modification of the carbohydrate balance, and alterations in sugar (glucose, sucrose, trehalose, and myo-inositol) and auxin metabolism.
Collapse
Affiliation(s)
- Eleni Kalogeropoulou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Irene Vloutoglou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Epaminondas J. Paplomatas
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| |
Collapse
|
2
|
Xiao Y, Li Y, Ouyang L, Yin A, Xu B, Zhang L, Chen J, Liu J. A banana transcriptional repressor MaAP2a participates in fruit starch degradation during postharvest ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1036719. [PMID: 36438126 PMCID: PMC9691770 DOI: 10.3389/fpls.2022.1036719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Fruit postharvest ripening is a crucial course for many fruits with significant conversion of biosubstance, which forms an intricate regulatory network. Ethylene facilitates the ripening process in banana with a remarkable change of fruit starch, but the mechanism adjusting the expression of starch degradation-related enzyme genes is incompletely discovered. Here, we describe a banana APETALA2 transcription factor (MaAP2a) identified as a transcriptional repressor with its powerful transcriptional inhibitory activity. The transcriptional level of MaAP2a gradually decreased with the transition of banana fruit ripening, suggesting a passive role of MaAP2a in banana fruit ripening. Moreover, MaAP2a is a classic nucleoprotein and encompasses transcriptional repressor domain (EAR, LxLxLx). More specifically, protein-DNA interaction assays found that MaAP2a repressed the expression of 15 starch degradation-related genes comprising MaGWD1, MaPWD1, MaSEX4, MaLSF1, MaBAM1-MaBAM3, MaAMY2B/2C/3A/3C, MaMEX1/2, and MapGlcT2-1/2-2 via binding to the GCC-box or AT-rich motif of their promoters. Overall, these results reveal an original MaAP2a-mediated negative regulatory network involved in banana postharvest starch breakdown, which advances our cognition on banana fruit ripening and offers additional reference values for banana varietal improvement.
Collapse
Affiliation(s)
- Yunyi Xiao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ying Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Lejun Ouyang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Aiguo Yin
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Bo Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ling Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Jianye Chen
- College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Liu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
3
|
Luyckx M, Hausman JF, Sergeant K, Guerriero G, Lutts S. Molecular and Biochemical Insights Into Early Responses of Hemp to Cd and Zn Exposure and the Potential Effect of Si on Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:711853. [PMID: 34539703 PMCID: PMC8446647 DOI: 10.3389/fpls.2021.711853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
With the intensification of human activities, plants are more frequently exposed to heavy metals (HM). Zinc (Zn) and cadmium (Cd) are frequently and simultaneously found in contaminated soils, including agronomic soils contaminated by the atmospheric fallout near smelters. The fiber crop Cannabis sativa L. is a suitable alternative to food crops for crop cultivation on these soils. In this study, Cd (20 μM) and Zn (100 μM) were shown to induce comparable growth inhibition in C. sativa. To devise agricultural strategies aimed at improving crop yield, the effect of silicon (Si; 2 mM) on the stress tolerance of plants was considered. Targeted gene expression and proteomic analysis were performed on leaves and roots after 1 week of treatment. Both Cd- and Zn-stimulated genes involved in proline biosynthesis [pyrroline-5-carboxylate reductase (P5CR)] and phenylpropanoid pathway [phenylalanine ammonia-lyase (PAL)] but Cd also specifically increased the expression of PCS1-1 involved in phytochelatin (PC) synthesis. Si exposure influences the expression of numerous genes in a contrasting way in Cd- and Zn-exposed plants. At the leaf level, the accumulation of 122 proteins was affected by Cd, whereas 47 proteins were affected by Zn: only 16 proteins were affected by both Cd and Zn. The number of proteins affected due to Si exposure (27) alone was by far lower, and 12 were not modified by heavy metal treatment while no common protein seemed to be modified by both CdSi and ZnSi treatment. It is concluded that Cd and Zn had a clear different impact on plant metabolism and that Si confers a specific physiological status to stressed plants, with quite distinct impacts on hemp proteome depending on the considered heavy metal.
Collapse
Affiliation(s)
- Marie Luyckx
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Jiang X, Fan L, Li P, Zou X, Zhang Z, Fan S, Gong J, Yuan Y, Shang H. Co-expression network and comparative transcriptome analysis for fiber initiation and elongation reveal genetic differences in two lines from upland cotton CCRI70 RIL population. PeerJ 2021; 9:e11812. [PMID: 34327061 PMCID: PMC8308610 DOI: 10.7717/peerj.11812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Upland cotton is the most widely planted for natural fiber around the world, and either lint percentage (LP) or fiber length (FL) is the crucial component tremendously affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL) population presenting different phenotypes in LP and FL traits were chosen to conduct RNA sequencing on ovule and fiber samples, aiming at exploring the differences of molecular and genetic mechanisms during cotton fiber initiation and elongation stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated differentially expressed genes (DGEs) in L2 were obtained at -3, 0, 5 and 10 days post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated using Short Time-series Expression Miner (STEM) analysis; seven modules and hub genes were identified using weighted gene co-expression network analysis. The DEGs were mainly enriched into energetic metabolism and accumulating as well as auxin signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub genes were identified as 14-3-3ω , TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc., where the DEGs and hub genes revealed the genetic and molecular mechanisms and differences during cotton fiber development.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Schreier TB, Fahy B, David LC, Siddiqui H, Castells-Graells R, Smith AM. Introduction of glucan synthase into the cytosol in wheat endosperm causes massive maltose accumulation and represses starch synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1431-1442. [PMID: 33764607 DOI: 10.1111/tpj.15246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
We expressed a bacterial glucan synthase (Agrobacterium GlgA) in the cytosol of developing endosperm cells in wheat grains, to discover whether it could generate a glucan from cytosolic ADP-glucose. Transgenic lines had high glucan synthase activity during grain filling, but did not accumulate glucan. Instead, grains accumulated very high concentrations of maltose. They had large volumes during development due to high water content, and very shrivelled grains at maturity. Starch synthesis was severely reduced. We propose that cytosolic glucan synthesized by the glucan synthase was immediately hydrolysed to maltose by cytosolic β-amylase(s). Maltose accumulation resulted in a high osmotic potential in developing grain, drawing in excess water that stretched the seed coat and pericarp. Loss of water during grain maturation then led to shrinkage when the grains matured. Maltose accumulation is likely to account for the reduced starch synthesis in transgenic grains, through signalling and toxic effects. Using bioinformatics, we identify an isoform of β-amylase likely to be responsible for maltose accumulation. Removal of this isoform through identification of TILLING mutants or genome editing, combined with co-expression of heterologous glucan synthase and a glucan branching enzyme, may in future enable elevated yields of carbohydrate through simultaneous accumulation of starch and cytosolic glucan.
Collapse
Affiliation(s)
- Tina B Schreier
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Plant Sciences, University of Cambridge, Downing St, Cambridge, CB2 3EA, UK
| | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Laure C David
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- ETH Department of Biology, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Hamad Siddiqui
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Germains Seed Technology, Lab 7, Centrum, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Roger Castells-Graells
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
6
|
Lu X, Chen Z, Deng X, Gu M, Zhu Z, Ren J, Fu S. Transcriptomic and metabolomic analyses of non-structural carbohydrates in red maple leaves. Funct Integr Genomics 2021; 21:265-281. [PMID: 33611764 DOI: 10.1007/s10142-021-00776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/03/2023]
Abstract
Plant sugars serve to balance nutrition, regulate development, and respond to biotic and abiotic stresses, whereas non-structural carbohydrates (NSCs) are essential energy sources that facilitate plant growth, metabolism, and environmental adaptation. To better elucidate the mechanisms of NSCs in red maple, ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS) and high-throughput RNA-sequencing were performed on green, red, and yellow leaves from a selected red maple mutant. In green leaves, the fructose phosphorylation process exhibited greater flux. In yellow leaves, sucrose and starch had a stronger capacity for synthesis and degradation, whereas in red leaves, there was a greater accumulation of trehalose and manninotriose. ArTPS5 positively regulated amylose, which was negatively regulated by ArFBP2, whereas ArFRK2 and ArFBP13 played a positive role in the biosynthesis of Sucrose-6P. Sucrose-6P also regulated anthocyanins and abscisic acid in red maple by affecting transcription factors. The results of this paper can assist with the control and optimization of the biosynthesis of NSCs in red maple, which may ultimately provide the foundation for influencing sugar production in Acer.
Collapse
Affiliation(s)
- Xiaoyu Lu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 West Changjiang Rd., Hefei, Anhui, 230036, People's Republic of China.,Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 South Agricultural Rd., Hefei, Anhui, 230001, People's Republic of China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 South Agricultural Rd., Hefei, Anhui, 230001, People's Republic of China
| | - Xinyi Deng
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Rd., Hefei, Anhui, 230036, People's Republic of China
| | - Mingyuan Gu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 West Changjiang Rd., Hefei, Anhui, 230036, People's Republic of China
| | - Zhiyong Zhu
- Ningbo City College of Vocational Technology, Ningbo, 315502, People's Republic of China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 South Agricultural Rd., Hefei, Anhui, 230001, People's Republic of China.
| | - Songling Fu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 West Changjiang Rd., Hefei, Anhui, 230036, People's Republic of China.
| |
Collapse
|
7
|
da Silva JR, Boaretto RM, Lavorenti JAL, dos Santos BCF, Coletta-Filho HD, Mattos D. Effects of Deficit Irrigation and Huanglongbing on Sweet Orange Trees. FRONTIERS IN PLANT SCIENCE 2021; 12:731314. [PMID: 34721459 PMCID: PMC8554030 DOI: 10.3389/fpls.2021.731314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 05/21/2023]
Abstract
This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB-) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.
Collapse
|