1
|
Yamaguchi J, Nishida K, Kobatake E, Mie M. Functional decoration of elastin-like polypeptides-based nanoparticles with a modular assembly via isopeptide bond formation. Biotechnol Lett 2024; 47:6. [PMID: 39609315 DOI: 10.1007/s10529-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024]
Abstract
Temperature-responsive elastin-like polypeptides (ELPs) exhibit a low critical solution temperature-type phase transition and offer potential as useful materials for the construction of nanoparticles. Herein, we developed a novel decoration method for ELP-based nanoparticles via isopeptide bond formation with the SnoopTag/SnoopCatcher system that is not affected by the heating process required for particle formation. A mixture of a fusion protein of ELP and poly(aspartic acid) (poly(D)), known as ELP-poly(D), and ELP-poly(D) fused with SnoopCatcher (ELP-poly(D)-SnC) formed protein nanoparticles as a result of the temperature responsiveness of ELP, with the resultant nanoparticles displaying the SnoopCatcher binding domain on their surfaces. In the present study, two model proteins fused to SnoopTag were displayed on the surfaces of protein nanoparticles constructed from ELP-poly(D)-SnC and ELP-poly(D). The model proteins are enhanced green fluorescent protein (EGFP) and Renilla luciferace (Rluc), which exhibits luminescent capability and weak thermostability, respectively. EGFP on the particle surface was found to retain 48.7% activity, while Rluc exhibited almost full activity, as calculated from the binding efficiency and nanoparticle activities recovered after purification. ELP-based nanoparticles containing the SnoopTag/SnoopCatcher system offer the opportunity for particle decoration with a wide range of functional proteins via isopeptide bond formation.
Collapse
Affiliation(s)
- Jun Yamaguchi
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
2
|
Li Q, Yang X, Xia X, Xia XX, Yan D. Affibody-Functionalized Elastin-like Peptide-Drug Conjugate Nanomicelle for Targeted Ovarian Cancer Therapy. Biomacromolecules 2024; 25:6474-6484. [PMID: 39235966 DOI: 10.1021/acs.biomac.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Recombinant elastin-like polypeptides (ELPs) have emerged as an attractive nanoplatform for drug delivery due to their tunable genetically encoded sequence, biocompatibility, and stimuli-responsive self-assembly behaviors. Here, we designed and biosynthesized an HER2 (human epidermal growth factor receptor 2)-targeted affibody-ELP fusion protein (Z-ELP), which was subsequently conjugated with monomethyl auristatin E (MMAE) to build a protein-drug conjugate (Z-ELP-M). Due to its thermal response, Z-ELP-M can immediately self-assemble into a nanomicelle at physiological temperature. Benefiting from its active targeting and nanomorphology, Z-ELP-M exhibits enhanced cellular internalization and deep tumor penetration in vitro. Moreover, Z-ELP-M shows excellent tumor targeting and superior antitumor efficacy in HER2-positive ovarian cancer, demonstrating a relative tumor growth inhibition of 104.6%. These findings suggest that an affibody-functionalized elastin-like peptide-drug conjugate nanomicelle is an efficient strategy to improve antitumor efficacy and biosafety in cancer therapy.
Collapse
Affiliation(s)
- Qingrong Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Nishida K, Wang G, Kobatake E, Mie M. Sensitive Detection of Tumor Cells Using Protein Nanoparticles with Multiple Displays of DNA Aptamers and Bioluminescent Reporters. ACS Biomater Sci Eng 2023; 9:5260-5269. [PMID: 37642536 DOI: 10.1021/acsbiomaterials.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Simple and effective detection methods for circulating tumor cells are essential for early detection and progression monitoring of tumors. The use of DNA aptamer and bioluminescence is expected to be a key tool for the simple, effective, and sensitive detection of tumor cells. Herein, we designed multifunctional protein nanoparticles for the detection of tumor cells using DNA aptamer and bioluminescence. Fusion proteins (ELP-poly(d)-POIs), composed of elastin-like polypeptide (ELP) fused with protein of interests (POIs) via poly(aspartic acid) (poly(d)), formed the protein nanoparticles based on the temperature responsivity of ELP sequences, leading to multiply displayed POIs on the protein nanoparticles. In the present study, we focused on porcine circovirus type 2 replication initiation protein (Rep), which covalently conjugated with DNA aptamers, and NanoLuc luciferase (Nluc), which emitted a strong bioluminescence, as POIs. ELP-poly(d)-Rep and ELP-poly(d)-Nluc were constructed and formed the protein nanoparticles with multiply displayed Nluc and Rep (DNA aptamer) that amplified the bioluminescence signal and tumor recognition ability. Mucin-1 (MUC1)-overexpressing human breast tumor MCF7 cells and MUC1-recognizing aptamer (MUC1 aptamer) were selected as models. The MUC1 aptamer-conjugated protein nanoparticles exhibited a 13.7-fold higher bioluminescence signal to MCF-7 cells than to human embryonic kidney 293 (HEK293) cells, which express low levels of MUC1. Furthermore, the protein nanoparticles could detect up to 70.7 cells/mL of MCF-7 cells from a cell suspension containing HEK-293. The protein nanoparticles with multiple Rep and Nluc show a great potential as a material for detecting CTCs.
Collapse
Affiliation(s)
- Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Gaoyang Wang
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
4
|
Development of an enhanced immunoassay based on protein nanoparticles displaying an IgG-binding domain and luciferase. Anal Bioanal Chem 2022; 414:2079-2088. [PMID: 35037082 DOI: 10.1007/s00216-021-03842-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022]
Abstract
Detection of small amounts of target molecules with high sensitivity is important for the diagnosis of many diseases, including cancers, and is particularly important to detect early stages of disease. Here, we report the development of a temperature-responsive fusion protein (ELP-DCN) comprised of an elastin-like polypeptide (ELP), poly-aspartic acid (D), antibody-binding domain C (C), and NanoLuc luciferase (N). ELP-DCN proteins form nanoparticles above a certain threshold temperature that display an antibody-binding domain and NanoLuc luciferase on their surface. ELP-DCN nanoparticles can be applied for enhancement of immunoassay systems because they provide more antibody-binding sites and an increased number of luciferase molecules, resulting in an increase in assay signal. Here, we report the detection of human serum albumin (HSA) as a model protein using anti-HSA and ELP-DCN proteins. Upon formation of ELP-DCN nanoparticles, the detection limit improved tenfold compared to the monomeric form of ELP-DCN.
Collapse
|
5
|
Guo JB, Wei TL, He QH, Cheng JS, Qiu XZ, Liu WP, Lan XQ, Chen LF, Guo M. A magnetic-separation-based homogeneous immunosensor for the detection of deoxynivalenol coupled with a nano-affinity cleaning up for LC-MS/MS confirmation. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1886254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jie-Biao Guo
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Tai-Long Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, People’s Republic of China
| | | | - Xiu-Zhen Qiu
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Wang-Pei Liu
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Xian-Quan Lan
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Lu-Fen Chen
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| | - Min Guo
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| |
Collapse
|
6
|
Abstract
Silk fibroin produced from silkworms has been intensively utilized as a scaffold material for a variety of biotechnological applications owing to its remarkable mechanical strength, extensibility, biocompatibility, and ease of biofunctionalization. In this research, we engineered silk as a novel trap platform capable of capturing microorganisms. Specifically, we first fabricated the silk material into a silk sponge by lyophilization, yielding a 3D scaffold with porous microstructures. The sponge stability in water was significantly improved by ethanol treatment with elevated β-sheet content and crystallinity of silk. Next, we biofunctionalized the silk sponge with a poly-specific microbial targeting molecule, ApoH (apolipoprotein H), to enable a novel silk-based microbial trap. The recombinant ApoH engineered with an additional penta-tyrosine was assembled onto the silk sponge through the horseradish peroxidase (HRP) mediated dityrosine cross-linking. Last, the ApoH-decorated silk sponge was demonstrated to be functional in capturing our model microorganism targets, E. coli and norovirus-like particles. We envision that this biofabricated silk platform, capable of trapping a variety of microbial entities, could serve as a versatile scaffold for rapid isolation and enrichment of microbial samples toward future diagnostics and therapeutics. This strategy, in turn, can expedite advancing future biodevices with functionality and sustainability.
Collapse
Affiliation(s)
- Shan-Ru Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Jheng-Liang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Guo W, Mashimo Y, Kobatake E, Mie M. Construction of DNA-displaying nanoparticles by enzymatic conjugation of DNA and elastin-like polypeptides using a replication initiation protein. NANOTECHNOLOGY 2020; 31:255102. [PMID: 32176872 DOI: 10.1088/1361-6528/ab8042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA-displaying nanoparticles comprised of conjugates of single-stranded DNA (ssDNA) and elastin-like polypeptide (ELP) were developed. ssDNA was enzymatically conjugated to ELPs via a catalytic domain of Porcine Circovirus type 2 replication initiation protein (pRep) fused to ELPs. Nanoparticles were formed upon heating to temperatures above the phase transition temperature due to the hydrophobicity of ELPs and the hydrophilicity of conjugated ssDNA. We demonstrated the applicability of the resultant nanoparticles as drug carriers with tumor-targeting properties by conjugating a DNA aptamer, which is known to bind to Mucin 1 (MUC1), to ELPs. DNA aptamer-displaying nanoparticles encapsulating the anti-cancer drug paclitaxel were able to bind to cells overexpressing MUC1 and induce cell death.
Collapse
Affiliation(s)
- Wei Guo
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | | | | | | |
Collapse
|
8
|
Sugihara T, Mie M, Kobatake E. Direct Labeling of Protein Nanoparticles with Fluorescent Compounds for Immunoassay Applications. ANAL SCI 2020; 36:385-387. [PMID: 31735760 DOI: 10.2116/analsci.19n024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A fusion protein, designated ELP-D-C, comprised of a hydrophobic elastin-like polypeptide unit, a hydrophilic aspartic acid-rich peptide unit, and an antibody-binding domain as a functional unit, was constructed. Upon heat induction, ELP-D-C forms micellar nanoparticles displaying antibody-binding domains on their surfaces. The protein nanoparticles were able to incorporate hydrophobic fluorescent compounds and subsequently detect target molecules via antibody binding by the resulting fluorescence intensity, which was proportional to the log of the concentration of the target molecule.
Collapse
Affiliation(s)
- Tsutomu Sugihara
- School of Life Science and Technology, Tokyo Institute of Technology.,Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co., Ltd
| | - Masayasu Mie
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
9
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
10
|
Badasyan A, Mavrič A, Kralj Cigić I, Bencik T, Valant M. Polymer nanoparticle sizes from dynamic light scattering and size exclusion chromatography: the case study of polysilanes. SOFT MATTER 2018; 14:4735-4740. [PMID: 29796469 DOI: 10.1039/c8sm00780b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic light scattering (DLS) and size exclusion chromatography (SEC) are among the most popular methods for determining polymer sizes in solution. Taking dendritic and network polysilanes as a group of least soluble polymer substances, we critically compare and discuss the difference between nanoparticle sizes, obtained by DLS and SEC. Polymer nanoparticles are typically in poor solution conditions below the theta point and are therefore in the globular conformation. The determination of particle sizes in the presence of attractive interactions is not a trivial task. The only possibility to measure, aggregation-free, the true molecular size of polymer nanoparticles in such a solution regime, is to perform the experiment with a dilute solution of globules (below the theta point and above the miscibility line). Based on the results of our polysilane measurements, we come to a conclusion that DLS provides more reliable results than SEC for dilute solutions of globules. General implications for the size measurements of polymer nanoparticles in solution are discussed.
Collapse
Affiliation(s)
- Artem Badasyan
- University of Nova Gorica, Materials Research Laboratory, Vipavska 13, SI-5000 Nova Gorica, Slovenia.
| | | | | | | | | |
Collapse
|