1
|
Zhang X, Diao Z, Ma H, Xie X, Wang Y, Liu X, Yuan X, Zhu F. Multi-class organic pollutants in PM 2.5 in mixed area of Shanghai: Levels, sources and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166352. [PMID: 37598962 DOI: 10.1016/j.scitotenv.2023.166352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
The occurrence of 25 multi-class pollutants comprising phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and synthetic musks (SMs) were studied in PM2.5 samples collected at an industrial/commercial/residential/traffic mixed area in Shanghai during four seasons. During the whole period, a slight exceedance of the PM2.5 annual limit was observed, with an average of 36.8 μg/m3, and PAEs were the most predominant, accounting for >70 % of the studied organic pollutants in PM2.5, followed by PAHs and SMs. Statistically significant differences were observed for the concentrations of PM2.5, PAEs, PAHs, and SMs in winter and summer. This seasonal variation could be derived from anthropogenic activities and atmospheric dynamics. Principal component analysis (PCA) and PAHs ratios suggested a mixed source mainly derived from vehicle emissions and industrial processes. Moreover, gaseous pollutants were also accounted for, indicating the emission of PAHs might accompany the NO2 emission process. Finally, inhalation of PM2.5-bound organic pollutants for carcinogenic and non-carcinogenic risks were estimated as average values for each season, showing outside the safe levels in autumn and winter in some cases, suggesting that new policies should be to developed to reduce their emissions and protect human health in this area.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zishan Diao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Hui Ma
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China; Environmental Monitoring Station of Pudong New District, Shanghai 200135, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Ying Wang
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China
| | - Xinyu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
2
|
Yang H, Xu W, Liang X, Yang Y, Zhou Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Mikrochim Acta 2020; 187:206. [DOI: 10.1007/s00604-020-4172-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
|
3
|
Dahiya B, Mehta PK. Detection of potential biomarkers associated with outrageous diseases and environmental pollutants by nanoparticle-based immuno-PCR assays. Anal Biochem 2019; 587:113444. [PMID: 31545948 DOI: 10.1016/j.ab.2019.113444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
Abstract
Immuno-polymerase chain reaction (I-PCR) assay with advantages of both enzyme-linked immunosorbent assay (ELISA) and PCR exhibits several-fold enhanced sensitivity in comparison to respective ELISA, which has wide applications for ultralow detection of several molecules, i.e. cytokines, protooncogenes and biomarkers associated with several diseases. Conjugation of reporter DNA to the detection antibodies is the most crucial step of I-PCR assay that usually employs streptavidin-protein A, streptavidin-biotin conjugate or succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) system by a covalent binding. However, coupling of antibodies and oligonucleotides to nanoparticles (NPs) is relatively easier in the NP-based I-PCR (NP-I-PCR) that also displays better accuracy. This article is mainly focused on the detection of important biomarkers associated with several outrageous infectious and non-infectious diseases by NP-I-PCR assays, which would expedite an early initiation of therapy thus human health would be improved. Similarly, ultralow detection of environmental pollutants by these assays and their elimination would certainly improve human health.
Collapse
Affiliation(s)
- Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India.
| |
Collapse
|
4
|
Xiang W, Wang G, Cao S, Wang Q, Xiao X, Li T, Yang M. Coupling antibody based recognition with DNA based signal amplification using an electrochemical probe modified with MnO2 nanosheets and gold nanoclusters: Application to the sensitive voltammetric determination of the cancer biomarker alpha fetoprotein. Mikrochim Acta 2018; 185:335. [DOI: 10.1007/s00604-018-2867-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/08/2018] [Indexed: 12/26/2022]
|