1
|
Chorpunkul A, Boonyuen U, Limkittikul K, Saengseesom W, Phongphaew W, Putchong I, Chankeeree P, Theerawatanasirikul S, Hajitou A, Benjathummarak S, Pitaksajjakul P, Lekcharoensuk P, Ramasoota P. Development of novel canine phage display-derived neutralizing monoclonal antibody fragments against rabies virus from immunized dogs. Sci Rep 2024; 14:22939. [PMID: 39358469 PMCID: PMC11447112 DOI: 10.1038/s41598-024-73339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Animal rabies is a potentially fatal infectious disease in mammals, especially dogs. Currently, the number of rabies cases in pet dogs is increasing in several regions of Thailand. However, no passive postexposure prophylaxis (PEP) has been developed to combat rabies infection in animals. As monoclonal antibodies (MAbs) are promising biological therapies for postinfection, we developed a canine-neutralizing MAb against rabies virus (RABV) via the single-chain variable fragment (scFv) platform. Immunized phage-displaying scFv libraries were constructed from PBMCs via the pComb3XSS system. Diverse canine VHVLκ and VHVLλ libraries containing 2.4 × 108 and 1.3 × 106 clones, respectively, were constructed. Five unique clones that show binding affinity with the RABV glycoprotein were then selected, of which K9RABVscFv1 and K9RABVscFv16 showed rapid fluorescent foci inhibition test (RFFIT) neutralizing titers above the human protective level of 0.5 IU/ml. Finally, in silico docking predictions revealed that the residues on the CDRs of these neutralizing clones interact mainly with similar antigenic sites II and III on the RABV glycoprotein. These candidates may be used to develop complete anti-RABV MAbs as a novel PEP protocol in pet dogs and other animals.
Collapse
Affiliation(s)
- Apidsada Chorpunkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wachiraporn Saengseesom
- Queen Saovabha Memorial Institute (WHO Collaborating Center for Research on Rabies), Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Iyarath Putchong
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pannamthip Pitaksajjakul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Tabll AA, Shahein YE, Omran MM, Hussein NA, El-Shershaby A, Petrovic A, Glasnovic M, Smolic R, Smolic M. Monoclonal IgY antibodies: advancements and limitations for immunodiagnosis and immunotherapy applications. Ther Adv Vaccines Immunother 2024; 12:25151355241264520. [PMID: 39071998 PMCID: PMC11273732 DOI: 10.1177/25151355241264520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/09/2024] [Indexed: 07/30/2024] Open
Abstract
Due to their high specificity and scalability, Monoclonal IgY antibodies have emerged as a valuable alternative to traditional polyclonal IgY antibodies. This abstract provides an overview of the production and purification methods of monoclonal IgY antibodies, highlights their advantages over polyclonal IgY antibodies, and discusses their recent applications. Monoclonal recombinant IgY antibodies, in contrast to polyclonal IgY antibodies, offer several benefits. such as derived from a single B-cell clone, monoclonal antibodies exhibit superior specificity, ensuring consistent and reliable results. Furthermore, it explores the suitability of monoclonal IgY antibodies for low- and middle-income countries, considering their cost-effectiveness and accessibility. We also discussed future directions and challenges in using polyclonal IgY and monoclonal IgY antibodies. In conclusion, monoclonal IgY antibodies offer substantial advantages over polyclonal IgY antibodies regarding specificity, scalability, and consistent performance. Their recent applications in diagnostics, therapeutics, and research highlight their versatility.
Collapse
Affiliation(s)
- Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Giza, 12622, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nahla A. Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Asmaa El-Shershaby
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Glasnovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
3
|
He J, Wang Y, Wang D, Yang Y, Xue X, Xu T, Gu S, Tang F. Heterologous antigen selection of chicken single-chain variable fragments against thiamethoxam. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1756-1762. [PMID: 38440844 DOI: 10.1039/d3ay01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Single-chain variable fragments (scFvs) are valuable in the development of immunoassays for pesticide detection. In this study, scFvs specific to thiamethoxam (Thi) were successfully isolated from a library generated by chicken immunization through heterologous coating selection. These scFvs were subsequently expressed with fusion with an Avi tag and alkaline phosphatase. After combination and optimization, a scFv-biotin based enzyme linked immunosorbent assay (ELISA) was developed for the detection of Thi, demonstrating an impressive half-maximum signal inhibition concentration (IC50) of 30 ng mL-1 and a limit of detection (LOD) of 1.8 ng mL-1. The immunoassay exhibited minimal cross-reactivity with other neonicotinoid insecticides, except for 7.5% for imidacloprid and 6.7% for imidaclothiz. The accuracy of the assay was confirmed by testing spiked samples of apple, pear, cabbage, and cucumber, which resulted in average recoveries ranging between 82% and 119%, closely aligning with the results obtained through high-performance liquid chromatography. Therefore, the chicken scFv-biotin based assay showed promise as a high-throughput screening tool for Thi in agricultural samples.
Collapse
Affiliation(s)
- Jinxin He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| | - Yating Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| | - Di Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| | - Yayun Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| | - Xianle Xue
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Shaopeng Gu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| | - Fang Tang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
4
|
Grzywa R, Łupicka-Słowik A, Sieńczyk M. IgYs: on her majesty's secret service. Front Immunol 2023; 14:1199427. [PMID: 37377972 PMCID: PMC10291628 DOI: 10.3389/fimmu.2023.1199427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
There has been an increasing interest in using Immunoglobulin Y (IgY) antibodies as an alternative to "classical" antimicrobials. Unlike traditional antibiotics, they can be utilized on a continual basis without leading to the development of resistance. The veterinary IgY antibody market is growing because of the demand for minimal antibiotic use in animal production. IgY antibodies are not as strong as antibiotics for treating infections, but they work well as preventative agents and are natural, nontoxic, and easy to produce. They can be administered orally and are well tolerated, even by young animals. Unlike antibiotics, oral IgY supplements support the microbiome that plays a vital role in maintaining overall health, including immune system function. IgY formulations can be delivered as egg yolk powder and do not require extensive purification. Lipids in IgY supplements improve antibody stability in the digestive tract. Given this, using IgY antibodies as an alternative to antimicrobials has garnered interest. In this review, we will examine their antibacterial potential.
Collapse
|
5
|
Hu S, Yang G, Chen Z, Li Q, Liu B, Liu M, Zhang D, Chang S, Kong R. Docking guided phase display to develop fusion protein with novel scFv and alkaline phosphatase for one-step ELISA salbutamol detection. Front Microbiol 2023; 14:1190793. [PMID: 37250048 PMCID: PMC10213401 DOI: 10.3389/fmicb.2023.1190793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Salbutamol (SAL) is a β2 adrenergic receptor agonist which has potential hazardous effects for human health. It is very important to establish a sensitive and convenient method to monitor SAL. Methods Here we introduce a method to combine the information from docking and site specific phage display, with the aim to obtain scFv with high affinity to SAL. First, single chain variable fragment (scFv) antibodies against SAL were generated through phage display. By using molecular docking approach, the complex structure of SAL with antibody was predicted and indicated that H3 and L3 contribute to the binding. Then new libraries were created by randomization specific residues located on H3 and L3 according to the docking results. Results and discussion Anti-SAL scFv antibodies with high efficiency were finally identified. In addition, the selected scFv was fused with alkaline phosphatase and expressed in E coli to develop a rapid and low-cost one step ELISA to detect SAL.
Collapse
Affiliation(s)
- Shuai Hu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Guangbo Yang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zhou Chen
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Qiuye Li
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Bin Liu
- Beijing New BioConcepts Biotech Co., Ltd., Beijing, China
| | - Ming Liu
- Beijing New BioConcepts Biotech Co., Ltd., Beijing, China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
6
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Li L, Wang X, Hou R, Wang Y, Wang X, Xie C, Chen Y, Wu S, Peng D. Single-chain variable fragment antibody-based ic-ELISA for rapid detection of macrolides in porcine muscle and computational simulation of its interaction mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Dou L, Zhang Y, Bai Y, Li Y, Liu M, Shao S, Li Q, Yu W, Shen J, Wang Z. Advances in Chicken IgY-Based Immunoassays for the Detection of Chemical and Biological Hazards in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:976-991. [PMID: 34990134 DOI: 10.1021/acs.jafc.1c06750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As antibodies are the main biological binder for hazards in food samples, their performance directly determines the sensitivity, specificity, and reproducibility of the developed immunoassay. The overwhelmingly used mammalian-derived antibodies usually suffer from complicated preparation, high cost, frequent bleeding of animals, and sometimes low titer and affinity. Chicken yolk antibody (IgY) has recently attracted considerable attention in the bioanalytical field owing to its advantages in productivity, animal welfare, comparable affinity, and high specificity. However, a broad understanding of the application of IgY-based immunoassay for the detection of chemical and biological hazards in food samples remains limited. Here, we briefly summarized the diversity, structure, and production of IgY including polyclonal and monoclonal formats. Then, a comprehensive overview of the principles, designs, and applications of IgY-based immunoassays for these hazards was reviewed and discussed, including food-borne pathogens, food allergens, veterinary drugs, pesticides, toxins, endocrine disrupting chemicals, etc. Thus, the trend of IgY-based immunoassays is expected, and more IgY types, higher sensitivity, and diversification of recognition-to-signal manners are necessary in the future.
Collapse
Affiliation(s)
- Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Qing Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Li L, Hou R, Shen W, Chen Y, Wu S, Wang Y, Wang X, Yuan Z, Peng D. Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism. Food Chem 2021; 363:129465. [PMID: 34247034 DOI: 10.1016/j.foodchem.2021.129465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023]
Abstract
To monitor the residue of kitasamycin (KIT), a monoclonal antibody against KIT was prepared, and a 50% inhibition concentration (IC50) of 5.7 ± 1.4 μg/L was achieved with the most sensitive antibody, KA/2A9, by optimizing ELISA conditions. The LODs for KIT in different animal tissues ranged from 22.47 μg/kg to 29.32 μg/kg, and the recoveries of the fortified tissues were 70% ~ 120% with coefficients of variation below 20%. Then, KIT-specific scFv KA/2A9/3 was prepared for the first time. Homologous modeling and molecular docking results indicated that the key amino acids of KA/2A9/3 scFv are TYR-92 (CDRL3), SER-93 (CDRL3), ASP-155 (CDRH1) and GLY-226 (CDRH3), and the hydrogen bond is the main force. And then, virtual mutation provides a method to evolve KA/2A9/3 scFv antibodies. These results contribute to comprehending the antigen-antibody binding mechanism and provide effective information for in vitro affinity maturation of anti-KIT scFv.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ren Hou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Shen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yushuang Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoqing Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|