1
|
Yao H, Hu YP, Yang HR, Yang BH, Wang JW, Zhang YM, Wei TB, Lin Q. Ion recognition properties of 2,2'-bibenzimidazole regulated by ammonium-modified pillar[5]arenes. Analyst 2023; 148:1221-1226. [PMID: 36762553 DOI: 10.1039/d3an00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the increasing issues of environmental degradation and health problem, the selective detection of toxic ions has attracted considerable attention from researchers. Chemical fluorescent sensors with the advantages of facile operation, high sensitivity, rapid response, and easy visualization are emerging as powerful detection tools towards ions. However, the selective recognition of ions is always hindered by the presence of other interfering substances. Herein, we show that supramolecular host-guest interaction based on a pillar[5]arene provides a new opportunity to regulate the ionic recognition properties of guest molecules. A pillar[5]arene-based host-guest complex HG was constructed through the host-guest interaction between ammonium functionalized pillar[5]arene (HAP5) and 2,2'-bibenzimidazole (G). The host-gust complex HG can realize the successive, highly selective, and sensitive detection of specific ions. It was found that only in the presence of HAP5, the sensitivity towards cations was evidently enhanced, and selective successive recognition for I- and HSO4- was achieved. Those results indicate that the introduction of HAP5 can effectively improve the ion recognition performance of 2,2'-bibenzimidazole, so it is a feasible strategy using supramolecular host-guest interaction to regulate the ionic recognition properties of guest molecules.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Yin-Ping Hu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Hao-Ran Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Bao-Hong Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Jin-Wang Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
2
|
Paradoxical fluorescein-naphthalene Salamo-Salen-Salamo Zn(II) complex as a H2PO4−-targeted chemosensor and its application in water samples. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Das R, Mondal M, Paul S, Pan A, Banerjee P. An Easy-to-use phosphate triggered Zinc-Azophenine Complex assisted metal extrusion assay: A diagnostic approach for chronic kidney disease and in silico docking studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
A substituted benzothiazolinic merocyanine derivative as a reversible, selective, colorimetric and fluorescent probe for HSO4− in aqueous solution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Yan L, Li Z, Xiong Y, Zhong X, Peng S, Li H. Zinc( ii) Schiff base complexes as dual probes for the detection of NH 4+ and HPO 42− ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01686a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three novel Zn(ii) Schiff base complexes were obtained by solvent evaporation technique. 1 and 2 show selectively recognition of NH4+ and HPO42− accompanied with an efficient fluorescence “turn off” phenomenon.
Collapse
Affiliation(s)
- Li Yan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- Analysis & Testing Center of Beijing Institute of Technology, Liangxiang Campus, Liangxiang East Road, Beijing 102488, P. R. China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yan Xiong
- Analysis & Testing Center of Beijing Institute of Technology, Liangxiang Campus, Liangxiang East Road, Beijing 102488, P. R. China
| | - Xue Zhong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Shaochun Peng
- Analysis & Testing Center of Beijing Institute of Technology, Liangxiang Campus, Liangxiang East Road, Beijing 102488, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
6
|
Choe D, Kim C. An Acylhydrazone-Based Fluorescent Sensor for Sequential Recognition of Al 3+ and H 2PO 4. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6392. [PMID: 34771920 PMCID: PMC8585233 DOI: 10.3390/ma14216392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
A novel acylhydrazone-based fluorescent sensor NATB was designed and synthesized for consecutive sensing of Al3+ and H2PO4-. NATB displayed fluorometric sensing to Al3+ and could sequentially detect H2PO4- by fluorescence quenching. The limits of detection for Al3+ and H2PO4- were determined to be 0.83 and 1.7 μM, respectively. The binding ratios of NATB to Al3+ and NATB-Al3+ to H2PO4- were found to be 1:1. The sequential recognition of Al3+ and H2PO4- by NATB could be repeated consecutively. In addition, the practicality of NATB was confirmed with the application of test strips. The sensing mechanisms of Al3+ and H2PO4- by NATB were investigated through fluorescence and UV-Visible spectroscopy, Job plot, ESI-MS, 1H NMR titration, and DFT calculations.
Collapse
Affiliation(s)
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul 136-742, Korea;
| |
Collapse
|
7
|
Jha S, Dey N. Differential Chromogenic Response towards F
−
and H
2
PO
4
−
: Hydrogen Bonding vs Deprotonation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Satadru Jha
- Department of Chemistry, Sikkim Manipal Institute of Technology Sikkim Manipal University, Gangtok Sikkim India
| | - Nilanjan Dey
- Department of Chemistry Birla Institute of Technology and Sciences-Pilani Hyderabad Campus Shameerpet Hyderabad 500078, Telangana India
| |
Collapse
|
8
|
Liu Y, Wang X, Feng E, Fan C, Pu S. A highly selective sequential recognition probe for Zn 2+ and HSO 4-/H 2PO 4- based on a diarylethene chemosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119052. [PMID: 33075705 DOI: 10.1016/j.saa.2020.119052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
A novel diarylethene derivative chemosensor DTP-o connected to Schiff base unit for fluorescent detection of Zn2+ and relay-detection of HSO4-/H2PO4- was designed and synthesized successfully. DTP-o displayed excellent photochromism and fluorometric sensing toward Zn2+ to form DTP-o-Zn2+ complex in acetonitrile with the detection limit of 5.62 × 10-7 M. And the form of DTP-o combined with Zn2+ could further be verified by Job's plot titrations and mass spectrometry analysis. Furthermore, the complex of DTP-o-Zn2+ showed an excellent characteristic of fluorescent relay-response toward HSO4- and H2PO4- with high sensitivity and selectivity. The detection limits for HSO4- and H2PO4- were as low as 3.04 × 10-8 M and 3.41 × 10-8 M, respectively. Moreover, the sensor DTP-o could also be applied to detect Zn2+ on practical samples and test strips with high accuracy.
Collapse
Affiliation(s)
- Yang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiao Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Erting Feng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
9
|
Pan G, Xia T, He Y. A tetraphenylethylene-based aggregation-induced emission sensor: Ultrasensitive “turn-on” fluorescent sensing for phosphate anion in pure water. Talanta 2021; 221:121434. [DOI: 10.1016/j.talanta.2020.121434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/15/2023]
|
10
|
Qi XN, Dong HQ, Yang HL, Qu WJ, Zhang YM, Yao H, Lin Q, Wei TB. Tailoring an HSO 4- anion hybrid receptor based on a phenazine derivative. Photochem Photobiol Sci 2020; 19:1373-1381. [PMID: 32852021 DOI: 10.1039/d0pp00159g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A catechol-functionalized phenazine imidazole (PD) was tailored with 2,3-diaminophenazine and 3,4-dihydroxy benzaldehyde, and it served as a hybrid acceptor for capturing HSO4- anions. The selectivity and sensitivity of the PD receptor for anion sensing were studied. It was found that the PD receptor could not only display a preferable sensitivity to HSO4- ions with a "turn-off" fluorescence response, but also have a strong anti-interference ability toward other common anions, especially basic anions such as CH3COO-, HPO42-, and H2PO4-. The anion recognition mechanism of PD towards HSO4- is based on multiple hydrogen bond interactions. Finally, the strips for anion detection were prepared, which were verified to be a convenient and high-efficiency test kit for detecting HSO4- ions with the naked eye.
Collapse
Affiliation(s)
- Xiao-Ni Qi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu Y, Zhao S, Zhang Y, Wang H, Yang X, Pei M, Zhang G. A selective “turn-on” sensor for recognizing In3+ and Zn2+ in respective systems based on imidazo[2,1-b]thiazole. Photochem Photobiol Sci 2020; 19:289-298. [DOI: 10.1039/c9pp00408d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An imidazo[2,1-b]thiazole-based compound (X) was designed and synthesized as an “off–on–off” sensor for the multiple recognition of In3+ and Zn2+ in different systems.
Collapse
Affiliation(s)
- Yuankang Xu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Songfang Zhao
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd
- Sanmenxia 472000
- China
| | - Yanxia Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
12
|
A highly sensitive turn-on fluorescent chemosensor for recognition of Zn(II) ions and its application in live cells imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhang G, Zhang Y, Lin L. A simple fluorescent schiff base for sequential detection of Zn2+ and PPi based on imidazo[2,1-b]thiazole. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhang G, Zhang Y. A dual functional fluorescent sensor for the detection of Al3+ and Zn2+ in different solvents. NEW J CHEM 2019. [DOI: 10.1039/c9nj03298c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new fluorescent sensor, X, was designed and synthesized based on imidazo[2,1-b]thiazole and 2-hydroxy-1-naphthaldehyde, which could be used to detect Al3+ in methanol buffer solution and detect Zn2+ in ethanol buffer solution, respectively.
Collapse
Affiliation(s)
- Yuankang Xu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | | | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanxia Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|