1
|
Bhattacharyya D, LeVatte MA, Singh U, Issac F, Karim M, Ali S, Sieben A, Huang S, Wishart DS. A novel colorimetric assay for the detection of urinary N 1, N 12-diacetylspermine, a known biomarker for colorectal cancer. Anal Biochem 2025; 697:115717. [PMID: 39536927 DOI: 10.1016/j.ab.2024.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Urinary N1, N12-diacetylspermine (DAS) is a known biomarker for colorectal cancer (CRC). However, DAS levels in both healthy and CRC patients' urine samples are extremely low and often challenging to quantify. Complex and expensive methods do exist to detect DAS in urine, but simpler, less expensive methods to detect DAS are needed, especially in low resource settings. Here we describe a highly efficient, fast, precise, and inexpensive colorimetric assay to detect low levels of DAS in human urine samples. We used recombinant diacetylspermine oxidase (rDAS Ox), expressed and extracted from E. coli, to oxidize DAS, producing three products including hydrogen peroxide (H2O2). The level of DAS present, which correlates with H2O2 levels, was measured using horseradish peroxidase (HRP), which together with H2O2, oxidized Amplex™ Red to produce the pink-colored resorufin. The concentration of resorufin is directly proportional to H2O2 (and DAS) levels. As urine contains metabolites which interfere with these oxidation reactions, we developed a simple two column-based protocol using ion exchange resins to remove these compounds and concentrate the DAS. With this novel cleaning and concentrating method, DAS was concentrated 15 times (confirmed by nuclear magnetic resonance (NMR) spectroscopy) and <1 μM DAS could be detected. Correlation graphs of urine samples spiked with known DAS concentrations versus assay-determined DAS concentrations had high coefficients of determination (R2) for 0-10 μM DAS (0.94) and for 0-1 μM DAS (0.91), clearly demonstrating the excellent performance of the two-column protocol with the rDAS Ox reaction mixture. To the best of our knowledge, this is first reported colorimetric enzymatic assay that quantitates DAS in urine.
Collapse
Affiliation(s)
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Upasana Singh
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Fleur Issac
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mahmoud Karim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Fisher Scientific, 10720 178 St Edmonton, AB, T5S 1J3, Canada
| | - Saira Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - August Sieben
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Suyenna Huang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Computer Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 1C9, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
2
|
Bai S, Gonzalez-Vasquez P, Torres-Calzada C, MacKay S, Cook J, Khaniani Y, Davies G, Singh U, Kovur P, Chen J, Wishart DS. Development of a point-of-care colorimetric metabolomic sensor platform. Biosens Bioelectron 2024; 253:116186. [PMID: 38457862 DOI: 10.1016/j.bios.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Metabolomics is the large-scale study of small molecule metabolites within a biological system. It has applications in measuring dietary intake, predicting heart disease risk, and diagnosing cancer. Metabolites are often measured using high-end analytical tools such as mass spectrometers or large spectrophotometers. However, due to their size, cost, and need for skilled operators, using such equipment at the bedside is not practical. To address this issue, we have developed a low-cost, portable, optical color sensor platform for metabolite detection. This platform includes LEDs, sensors, microcontrollers, a power source, and a Bluetooth chip enclosed within a 3D-printed light-tight case. We evaluated the color sensor's performance using both a range of dyed water samples as well as well-established colorimetric reactions for specific metabolite detection. The sensor accurately measured creatinine, L-carnitine, ascorbate, and succinate well within normal human urine levels with accuracy and sensitivity equal to or better than a standard laboratory spectrophotometer. Our color sensor offers a cost-effective, portable alternative for measuring metabolites via colorimetric assays, thereby enabling low-cost, point-of-care metabolite testing.
Collapse
Affiliation(s)
- Songtian Bai
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2H5, Canada
| | - Pablo Gonzalez-Vasquez
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2H5, Canada
| | | | - Scott MacKay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - James Cook
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Yeganeh Khaniani
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Gareth Davies
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2H5, Canada
| | - Upasana Singh
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Prashanthi Kovur
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2H5, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada; Department of Computer Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
3
|
Bhattacharyya D, LeVatte MA, Wishart DS. A fast and accurate colorimetric assay for quantifying hippuric acid in human urine. Anal Biochem 2023; 680:115303. [PMID: 37689001 DOI: 10.1016/j.ab.2023.115303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Hippuric acid is an abundant metabolite in human urine. Urinary hippuric acid levels change with toxic exposure to aromatic compounds, consumption of fruits and vegetables, cancers, chronic kidney disease, schizophrenia and Crohn's disease. While urinary hippuric acid can be detected and quantified via mass spectrometry or nuclear magnetic resonance spectroscopy, a colorimetric assay would be preferable for a low-cost, point-of care clinical assay. Two colorimetric methods, that use p-dimethylaminobenzaldehyde (DMAB) or benzenesulfonyl chloride (PhSO2Cl), respectively, have been previously developed to detect hippuric acid but these assays have many limitations. We replaced PhSO2Cl with p-toluenesulfonyl chloride (p-TsCl), to create a simpler, faster and more accurate method that works with human urine. This modified colorimetric assay detects from 60 μM to 1000 μM hippuric acid in urine in 2 min. We also corrected for the effects of interfering compounds present in urine such that the assay works across many urine backgrounds. We validated this improved assay on multiple hippurate-spiked urine samples, observing an excellent correlation (R2 > 0.94) between observed and known hippurate concentrations. These data suggest that this colorimetric assay is accurate and should greatly facilitate the measurement of hippuric acid in urine to detect a variety of human conditions.
Collapse
Affiliation(s)
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada; Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E9, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2B7, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
4
|
Song M, Huang M, Yang Z, Chen F. Potassium Ferricyanide Oxidize Silicon Quantum Dots under Alkaline Condition to Produce Chemiluminescence for Uric Acid Detection in Human Urine. LUMINESCENCE 2022; 37:1557-1562. [PMID: 35816122 DOI: 10.1002/bio.4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/07/2022]
Abstract
Potassium ferricyanide (K3 [Fe (CN)6 ]) could directly oxidize silicon quantum dots (Si QDs) to generate chemiluminescence (CL) under alkaline condition. It was noteworthy that in the Si QDs-K3 [Fe (CN)6 ]-NaOH CL system, the Si QDs worked as a new luminescent material. Besides, the signal intensity of this CL system could be weaken with the addition of uric acid (UA). Based on these, we exploited a new painless and convenient determination method of UA. This method only needed to filter and dilute the UA, without other pretreatment. The constructed system exhibited a linear relationship ranged from 0.50 to 4.50 mmol·L-1 , with 0.24 mmol·L-1 of detection limit, and this system had been successfully demonstrated the detection of UA in human urine. Meanwhile, this work had also broaden the application of the Si QDs in CL research.
Collapse
Affiliation(s)
- Mengling Song
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Mingyan Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Zixin Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Funan Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Nawalohakul T, Charoenjiraroj P, Chantiwas R, Wilairat P, Praditweangkum W. A ninety-six well plate as headspaces with moist starch indicator paper as a cover for the determination of ascorbic acid by iodate oxidation and formation of volatile iodine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:741-749. [PMID: 35108716 DOI: 10.1039/d1ay02050a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work presents the use of a 96-well plate as headspaces for the determination of ascorbic acid in samples loaded in the 96-well plate. Ascorbic acid in the sample is oxidized to iodide by the addition of excess acidic iodate solution into the well. The iodide is further oxidized by the remaining iodate to molecular iodine. A single sheet of moist starch indicator paper is immediately placed over the 96-well plate after the addition of the iodate with the moisture forming a gas seal. The iodine gas in each well diffuses through the headspace to react with the starch paper producing circular areas of a colored starch-iodine complex. After 15 min the indicator paper is scanned, and the digital images of the complex are analyzed by using ImageJ software to obtain blue intensity values. The precision of the intensity values from 12 wells containing 20 μL of 2.84 mM standard ascorbic acid is <2% relative standard deviation. Optimal conditions for detection were investigated, including the starch concentration, the acidic iodate reagent, and the measurement time. The linear calibration range of ascorbic acid is 0.284-2.84 mM, based on the plot of concentration vs. -log(reflectance). The coefficient of determination (r2) is >0.998. Samples of fruit juice and dietary supplements were analyzed for their ascorbic acid contents. The results obtained from the headspace reflectance method are not statistically different from values obtained from the titration method using paired t-tests (α = 0.05).
Collapse
Affiliation(s)
- Thichaphat Nawalohakul
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Pannarat Charoenjiraroj
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Rattikan Chantiwas
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Prapin Wilairat
- Analytical Sciences and National Doping Test Institute, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Wiboon Praditweangkum
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
6
|
Doseděl M, Jirkovský E, Macáková K, Krčmová LK, Javorská L, Pourová J, Mercolini L, Remião F, Nováková L, Mladěnka P. Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021; 13:615. [PMID: 33668681 PMCID: PMC7918462 DOI: 10.3390/nu13020615] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin C (L-ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facilitation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic processes. Contrarily, high doses act as a pro-oxidant than an anti-oxidant. This may also be the reason why plasma levels are meticulously regulated on the level of absorption and excretion in the kidney. Interestingly, most cells contain vitamin C in millimolar concentrations, which is much higher than its plasma concentrations, and compared to other vitamins. The role of vitamin C is well demonstrated by miscellaneous symptoms of its absence-scurvy. The only clinically well-documented indication for vitamin C is scurvy. The effects of vitamin C administration on cancer, cardiovascular diseases, and infections are rather minor or even debatable in the general population. Vitamin C is relatively safe, but caution should be given to the administration of high doses, which can cause overt side effects in some susceptible patients (e.g., oxalate renal stones). Lastly, analytical methods for its determination with advantages and pitfalls are also discussed in this review.
Collapse
Affiliation(s)
- Martin Doseděl
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic;
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic;
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (L.K.K.); (L.N.)
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | - Laura Mercolini
- Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (L.K.K.); (L.N.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (E.J.); (J.P.)
| | | |
Collapse
|
7
|
Aptamer-Based Colorimetric Probe for trans-Zeatin Detection Using Unmodified Gold Nanoparticle. Int J Anal Chem 2020; 2020:8853451. [PMID: 33178280 PMCID: PMC7609143 DOI: 10.1155/2020/8853451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022] Open
Abstract
Trans-Zeatin is the major active phytohormone in immature corn kernels. Herein, a highly sensitive, good selective and simple aptamer-based colorimetric method for the detection of trans-zeatin was constructed. The selected aptamer sequence binds with trans-zeatin and induces a duplex-to-aptamer structure switching. The gold nanoparticles (AuNPs) solution is stable with high-concentration salt, which is protected by red complementary DNA. In the absence of trans-zeatin, the color of AuNPs changed from red to blue because aptamer DNA and complementary DNA form double-stranded DNA. Thus, the ratio of absorbance intensities (A522/A650) of AuNPs is changed with the concentration of trans-zeatin. The color change could be observed by the naked eye. The linear range of this method covers a large variation of trans-zeatin concentration from 0.05 to 0.75 μM. The detection limit is 0.037 μM. Moreover, this method was applied successfully to detect trans-zeatin in real plant samples.
Collapse
|
8
|
Wei S, Wang X, Pang B, Li H, Shi X, Zhao C, Li J, Wang J. Analyte-triggered autoacceleration of 4-mercaptophenylboronic acid-mediated aggregation of silver nanoparticles for facile and one-step ratiometric colorimetric method for detection of ascorbic acid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Wei S, Li J, He J, Zhao W, Wang F, Song X, Xu K, Wang J, Zhao C. Paper chip-based colorimetric assay for detection of Salmonella typhimurium by combining aptamer-modified Fe 3O 4@Ag nanoprobes and urease activity inhibition. Mikrochim Acta 2020; 187:554. [PMID: 32902716 DOI: 10.1007/s00604-020-04537-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
A rapid and sensitive colorimetric assay is described for Salmonella typhimurium (S. typhimurium) detection using urea/phenol red impregnated test paper. Aptamer-modified Fe3O4@Ag multifunctional hybrid nanoprobes (apt-Fe3O4@Ag NPs) were used to specifically captured S. typhimurium; the nanoprobes were quickly etched by H2O2 to form Ag+. The generated Ag+ can inhibit the urease-catalyzed hydrolysis reaction of urea to produce NH4+. Consequently, the as-prepared test paper displayed a yellow color. In the presence of S. typhimurium, the target bacteria can cause aggregation of apt-Fe3O4@Ag NPs, and the deposited Ag on the nanoprobe's surface is shielded against H2O2-induced oxidative decomposition leading to reduced Ag+ production. The catalytic activity of urease cannot be inhibited completely by inadequate amount of Ag+. An obvious color change from yellow to pink can be monitored directly using our test paper as a result of increased NH4+. The entire assay procedure could be completed within 1 h. A limit of detection of 48 cfu/mL is achieved with a linear range of 1 × 102 to 1 × 106 cfu/mL. The recoveries of S. typhimurium spiked in pure milk samples were 92.48-94.05%. Graphical abstract Schematic diagram of the proposed colorimetric assay for S. typhimurium detection based on etching of bifunctional apt-Fe3O4@Ag NPs and inhibiting catalytic activity of urease by Ag+. A color change from yellow to pink can be observed and correlated to the concentration of S. typhimurium.
Collapse
Affiliation(s)
- Shengnan Wei
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Jingya He
- School of Stomatology, Jilin University, Changchun, 130021, China
| | - Wei Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, China
| | - Feng Wang
- School of Stomatology, Jilin University, Changchun, 130021, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, 130021, China.,Public Health Detection Engineering Research Center of Jilin Province, Changchun, 130021, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun, 130021, China.,Public Health Detection Engineering Research Center of Jilin Province, Changchun, 130021, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Kalasin S, Sangnuang P, Khownarumit P, Tang IM, Surareungchai W. Evidence of Cu(I) Coupling with Creatinine Using Cuprous Nanoparticles Encapsulated with Polyacrylic Acid Gel-Cu(II) in Facilitating the Determination of Advanced Kidney Dysfunctions. ACS Biomater Sci Eng 2020; 6:1247-1258. [PMID: 33464870 DOI: 10.1021/acsbiomaterials.9b01664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An electrochemical-based sensor created for creatinine detection has been developed for early point-of-care (POC) of diagnosis of renal illnesses. Useful information for the preventive diagnosis and clinical treatments of congenital disorders of creatinine mechanism, advanced liver and kidney diseases, and renal dysfunction can be obtained by the noninvasive evaluation of the creatinine levels in urine. The direct detection of creatinine can be achieved using the modified nanocomposite of cuprous nanoparticles encapsulated by polyacrylic acid (PAA) gel-Cu(II) fabricating on a screen-printed carbon electrode. Here, we report that the degree of kidney dysfunction failure can be determined by an amount of Cu(I) bound with the creatinine through the adsorptive mechanism on the modified electrode. Under cyclic voltammetry scans, the amount of creatinine was measured from the adsorptive signals of the redox peak current identifying the Cu(I)-creatinine complex with a natural logarithm of the creatinine concentration ranging from 200 μM to 100 mM. For this detection range, the theoretical calculation was postulated to describe experimental behaviors of the adsorptive mechanism as creatinine diffused to adsorb on the composite-modified electrode to reduce oxidized copper nanoparticles and transformed to Cu(II)-creatinine complexes. Interestingly, there was evidence that anodic peak potentials had been reduced in magnitudes and shifted negatively by natural logarithm during the formation of the Cu(I)-creatinine complex. For practical usage in POC technology, the creatinine detection in interference was carried out using differential pulse voltammetry to solely determine faradaic currents of creatinine-copper formation. With the interference of urea, glucose, ascorbic acid, glycine, and uric acid in artificial urine, the sensor showed promising results of the interference-free determination with 99.4% sensitivity efficiency, whereas for human urine interference, this sensor showed 85% sensitivity efficiency in detecting creatinine. This shows that this composite-modified sensor (PAA gel-Cu(II)/Cu2O NPs) has great potential for use in the next-generation devices for creatinine sensing to determine the progression in kidney dysfunctions.
Collapse
Affiliation(s)
- Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pantawan Sangnuang
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Porntip Khownarumit
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - I Ming Tang
- Computation and Applied Science for Smart Innovation Cluster (CLASSIC), Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Werasak Surareungchai
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.,School of Bioresource and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
11
|
Wang Q, Ma X, Lv H, Wei A, Wu T, Ding L, Ma X, Ma C. MnO 2 nanoparticle mediated colorimetric turn-off determination of ascorbic acid. NEW J CHEM 2020. [DOI: 10.1039/c9nj05751j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The scheme of the turn-off colorimetric response of AA to the TMB–MnO2 NP system.
Collapse
Affiliation(s)
- Qi Wang
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Xulu Ma
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Houhua Lv
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Awen Wei
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Tingxuan Wu
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Lifeng Ding
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Xiang Ma
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Chunlei Ma
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| |
Collapse
|