1
|
Yu S, You J, Shi X, Zou X, Lu Z, Wang Y, Tan J, Sun Z, Li Z, Ji Z, Song C. Rapid Analysis of Estrogens in Meat Samples by High Performance Liquid Chromatography with Fluorescence Detection. J Fluoresc 2024; 34:425-436. [PMID: 37284963 DOI: 10.1007/s10895-023-03248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
A novel reagent named 4-(N-methyl-1,3-dioxo-benzoisoquinolin-6-yl-oxy)benzene sulfonyl chloride (MBIOBS-Cl) for the determination of estrogens in food samples by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Estrogens could be easily labeled by MBIOBS-Cl in Na2CO3-NaHCO3 buffer solution at pH 10.0. The complete labeling reaction for estrogens could be accomplished within five minutes, the corresponding derivatives exhibited strong fluorescence with the maximum excitation and emission wavelengths at 249 nm and 443 nm, respectively. The derivatization conditions, such as the molar ratio of reagent to estrogens, derivatization time, pH, temperature, and buffers were optimized. Derivatives were sufficiently stable to be efficiently analyzed by HPLC with a reversed-phase Agilent ZORBAX 300SB-C18 column with a good baseline resolution. Excellent linear correlations were obtained for all estrogen derivatives with correlation coefficients greater than 0.9998. Ultrasonic-Assisted extraction was used to optimize the extraction of estrogens from meat samples with a recovery higher than 82%. The detection limits (LOD, S/N = 3) of the method ranged from 0.95 to 3.3 μg· kg-1. The established method, which is fast, simple, inexpensive, and environment friendly, can be successfully applied for the detection of four steroidal estrogens from meat samples with little matrix interference.
Collapse
Affiliation(s)
- Shuiqiang Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Xinxin Shi
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiaocong Zou
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhihao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jiangkun Tan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhongyin Ji
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Cuihua Song
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| |
Collapse
|
2
|
Honda L, Arismendi D, Richter P. Integration of rotating disk sorptive extraction and dispersive-solid phase extraction for the determination of estrogens and their metabolites in urine by liquid chromatography/mass spectrometry. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
He L, Chen C, Duan S, Li Y, Li C, Yao X, Gonzalez FJ, Qin Z, Yao Z. Inhibition of estrogen sulfation by Xian-Ling-Gu-Bao capsule. J Steroid Biochem Mol Biol 2023; 225:106182. [PMID: 36152789 DOI: 10.1016/j.jsbmb.2022.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 02/01/2023]
Abstract
Xian-Ling-Gu-Bao capsule (XLGB) is a widely prescribed traditional Chinese medicine used for the treatment of osteoporosis. However, it significantly elevates levels of serum estrogens. Here we aimed to assess the dominant contributors of sulfotransferase (SULT) enzymes to the sulfation of estrogens and identify the effective inhibitors of this pathway in XLGB. First, estrone, 17β-estradiol, and estriol underwent sulfation in human liver S9 extracts. Phenotyping reactions and enzyme kinetics assays revealed that SULT1A1, 1A2, 1A3, 1C4, 1E1, and 2A1 all participated in estrogen sulfation, with SULT1E1 and 1A1 as the most important contributors. The incubation system for these two active enzymes were optimized with Tris-HCl buffer, DL-Dithiothreitol (DTT), MgCl2, adenosine 3'-phosphate 5'-phosphosulfate (PAPS), protein concentration, and incubation time. Then, 29 compounds in XLGB were selected to investigate their inhibitory effects and mechanisms against SULT1E1 and 1A1 through kinetic modelling. Moreover, in silico molecular docking was used to validate the obtained results. And finally, the prenylated flavonoids (isobavachin, neobavaisoflavone, etc.) from Psoralea corylifolia L., prenylated flavanols (icariside II) from Epimedium brevicornu Maxim., tanshinones (dihydrotanshinone, tanshinone II-A,) from Salvia miltiorrhiza Bge., and others (corylifol A, corylin) were identified as the most potent inhibitors of estrogen sulfation. Taken together, these findings provide insights into the understanding regioselectivity of estrogen sulfation and identify the effective components of XLGB responsible for the promotion of estrogen levels.
Collapse
Affiliation(s)
- Liangliang He
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chanjuan Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shuyi Duan
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of PR China, Jinan University, Guangzhou 510632, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of PR China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Agongo J, Armbruster M, Arnatt C, Edwards J. Analysis of endogenous metabolites using multifunctional derivatization and capillary RPLC-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3397-3404. [PMID: 35980164 DOI: 10.1039/d2ay01108e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heterogeneity in metabolite structure and charge state complicates their analysis in electrospray mass spectrometry (ESI-MS). Complications such as diminished signal response and quantitation can be reduced by sequential dual-stage derivatization and capillary RP LC-ESI-MS analysis. Our sequential dual-stage chemical derivatization reacts analyte primary amine and hydroxyl groups with a linear acyl chloride head containing a tertiary amine moiety. Analyte carboxylate groups are then coupled to a linear amine tag with a tertiary amine moiety. This increase in the number of tags on analytes increases analyte proton affinity and hydrophobicity. We derivatized 250 metabolite standards which on average improved signal to noise by >44-fold, with an average limit of detection of 66 nM and R2 of 0.98. This system detected 107 metabolites from 18 BAECs, 111 metabolites from human urine, and 153 from human serum based on retention time, exact mass, and MS/MS matches from a derivatized standard library. As a proof of concept, aortic endothelial cells were treated with epinephrine and analyzed by the dual-stage derivatization. We observed changes in 32 metabolites with many increases related to energy metabolism, specifically in the TCA cycle. A decrease in lactate levels and corresponding increase in pyruvate levels suggest that epinephrine causes a movement away from glycolytic reliance on energy and a shift towards the more efficient TCA respiration for increasing energy.
Collapse
Affiliation(s)
- Julius Agongo
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO, 63103, USA.
| | - Michael Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO, 63103, USA.
| | - Christopher Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO, 63103, USA.
| | - James Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO, 63103, USA.
| |
Collapse
|
5
|
He L, Xu C, Wang Z, Duan S, Xu J, Li C, Yao X, Gonzalez FJ, Qin Z, Yao Z. Identification of naturally occurring inhibitors in Xian-Ling-Gu-Bao capsule against the glucuronidation of estrogens. Front Pharmacol 2022; 13:935685. [PMID: 35991901 PMCID: PMC9386001 DOI: 10.3389/fphar.2022.935685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Xian-Ling-Gu-Bao (XLGB) capsule, a well-known traditional Chinese medicine prescription, is widely used for the treatment of osteoporosis. It could significantly increase the levels of estrogen in ovariectomized rats and mice. However, this working mechanism has not been well elucidated. Considering that UDP-glucuronosyltransferase (UGT) enzymes are the important enzymes that inactivate and regulate estrogen activity in vivo, this study aimed to identify the bioactive compounds from XLGB against the glucuronidation of estrogens. First, thirty compounds were considered as candidate bioactive compounds based on our previous studies including pharmacological evaluation, chemical profiles, and metabolic profiles. Second, the characteristics of estrogen glucuronidation by uridine diphosphate glucuronic acid (UDPGA)-supplemented human liver microsomes (HLM), human intestine microsomes (HIM), and expressed UGT enzymes were determined, and the incubation systems of their key UGT enzymes were optimized. Then, inhibitory effects and mechanisms of XLGB and its main compounds toward the key UGT isozymes were further investigated. As a result, estrogen underwent efficient glucuronidation by HLM and HIM. UGT1A10, 1A1, and 2B7 were mainly responsible for the glucuronidation of estrone, β-estradiol, and estriol, respectively. For E1 and E2, UGT1A10 and 1A1 tended to mediate estrogen-3-O-glucuronidation, while UGT2B7 preferred catalyzing estrogen-16-O-glucuronidation. Furthermore, the incubation system for active UGT isoforms was optimized including Tris-HCl buffer, detergents, MgCl2 concentration, β-glucuronidase inhibitors, UDPGA concentration, protein concentration, and incubation time. Based on optimal incubation conditions, eleven, nine, and nine compounds were identified as the potent inhibitors for UGT1A10, 1A1, and 2B7, respectively (IC50 < 4.97 μM and Ki < 3.35 μM). Among them, six compounds (bavachin, isobavachin, isobavachalcone, neobavaisoflavone, corylifol A, and icariside II) simultaneously demonstrated potent inhibitory effects against these three active enzymes. Prenylated flavanols from Epimedium brevicornu Maxim., prenylated flavonoids from Psoralea corylifolia L., and salvianolic acids from Salvia miltiorrhiza Bge. were characterized as the most important and effective compounds. The identification of potent natural inhibitors of XLGB against the glucuronidation of estrogen laid an important foundation for the pharmacodynamic material basis.
Collapse
Affiliation(s)
- Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chunxia Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziying Wang
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Shuyi Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P.R. China, Jinan University, Guangzhou, China
| | | | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhihong Yao, ; Zifei Qin,
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P.R. China, Jinan University, Guangzhou, China
- *Correspondence: Zhihong Yao, ; Zifei Qin,
| |
Collapse
|
6
|
Zhang J, Zhong SS, Zhao KM, Liu ZH, Dang Z, Liu Y. Sulfite may disrupt estrogen homeostasis in human via inhibition of steroid arylsulfatase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19913-19917. [PMID: 35098465 DOI: 10.1007/s11356-021-18416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Steroid arylsulfatase is an important enzyme in human, which plays an important role in dynamic equilibrium of natural estrogens. On the other hand, sulfite can be endogenously produced as a consequence of human body's metabolism of sulfur-containing amino acids, while its main sources to human are mainly derived from food as it is a widely used additive. Sulfite-sensitivity is a well-known phenomenon to a small proportion of populations. However, its potential adverse effects on healthy individuals have been hardly reported. It was for the first time reported in this study that sulfite could effectively inhibit arylsulfatase, and its IC50 values for the snail- and human urine-derived arylsulfatase were determined to be 71.9 and 142.8 µM, which were lower than the concentration of sulfite in some healthy population. Consequently, it appears that sulfite might disrupt estrogen homeostasis in human, and this deserves further investigation.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ke-Meng Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Isotope-dilution liquid chromatography-tandem mass spectrometry for quantification of human retinol binding protein 4 in serum. Anal Biochem 2022; 645:114589. [DOI: 10.1016/j.ab.2022.114589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023]
|
8
|
Zhang H, Cui Z, Yang B, Fang D, Liu Y, Wang Z. Integrated recombinant gene yeast bioassay and HPLC-MS analysis for detection of low-dose multi-component residue of hormone-like compounds in environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145569. [PMID: 33592471 DOI: 10.1016/j.scitotenv.2021.145569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Illegal addition of low-dose multi-component residue of hormone-like compounds have sprung up in human activities and production as a cunning strategy to escape from sanitation monitoring, sowing a horrible seed for accidents in food security. Hence, combined strategies with accuracy and efficiency are urgently needed to overcome current circumstance and practical hurdles. Herein, an integrated analysis that compromises recombinant gene yeast bioassay (V400E-YES) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) determination was developed promptly with distinguishing advantage as optimized V400E-YES provides a sum of hormone-like compounds in sample, and subsequent HPLC-MS analysis can accurately quantify the concentration of compounds. In terms of V400E-YES, large-scale random mutagenesis was performed to obtain higher sensitivity hormone receptors. Excitingly, single mutation of estrogen receptor (ER) at V400E and amphimutation of androgen receptor (AR) at G581R/D831E conferred the highest detection sensitivity with a more than 10-fold increase. Subsequently, sensitive HPLC-MS methods for simultaneous detection of eleven estrogens and nine androgens, respectively, were well-constructed. Utilizing this integrated and validated methods, we successfully investigated the hormone residue in environmental samples from farms in Jiangsu, China. Collectively, with multiple estrogens and androgens residue are being widely detected in soil and sewage samples, the feasibility of this method is highlighted, as well as the increasing lurking peril of hormone-like substance residues in environment.
Collapse
Affiliation(s)
- Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zihe Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Valko-Rokytovská M, Očenáš P, Salayová A, Kostecká Z. Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics. Int J Mol Sci 2021; 22:ijms22115878. [PMID: 34070921 PMCID: PMC8199112 DOI: 10.3390/ijms22115878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most common malignancy in women with high mortality. Sensitive and specific methods for the detection, characterization and quantification of endogenous steroids in body fluids or tissues are needed for the diagnosis, treatment and prognosis of breast cancer and many other diseases. At present, non-invasive diagnostic methods are gaining more and more prominence, which enable a relatively fast and painless way of detecting many diseases. Metabolomics is a promising analytical method, the principle of which is the study and analysis of metabolites in biological material. It represents a comprehensive non-invasive diagnosis, which has a high potential for use in the diagnosis and prognosis of cancers, including breast cancer. This short review focuses on the targeted metabolomics of steroid hormones, which play an important role in the development and classification of breast cancer. The most commonly used diagnostic tool is the chromatographic method with mass spectrometry detection, which can simultaneously determine several steroid hormones and metabolites in one sample. This analytical procedure has a high potential in effective diagnosis of steroidogenesis disorders. Due to the association between steroidogenesis and breast cancer progression, steroid profiling is an important tool, as well as in monitoring disease progression, improving prognosis, and minimizing recurrence.
Collapse
|
10
|
Huang F, Karu K, Campos LC. Simultaneous measurement of free and conjugated estrogens in surface water using capillary liquid chromatography tandem mass spectrometry. Analyst 2021; 146:2689-2704. [PMID: 33751008 DOI: 10.1039/d0an02335c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given detrimental impacts induced by estrogens at trace level, determination of them is significant but challenging due to their low content in environmental samples and inherent weak ionisation. A modified derivatisation-based methodology was applied for the first time to detect estrogen in free and conjugated forms including some isomers simultaneously using liquid chromatography tandem mass spectrometry (LC-MSn). Derivatisation reaction with previously used 1,2-dimethyl-1H-imidazole-5-sulphonyl chloride allowed significant increase of mass spectrometric signal of analytes and also provided distinctive fragmentation for their confirmation even in complicated matrix. Then satisfactory recovery (>75%) for the majority of analytes was achieved following optimisation of solid phase extraction (SPE) factors. The linearity was validated over a wide concentration with the correlation coefficient around 0.995. The repeatability of this methodology was also confirmed via the intra-day and inter-day precision and was less than 11.73%. Validation of method quantification limits (MQLs) for all chosen estrogens was conducted using 1000 mL surface water, ranging from 7.0 to 132.3 pg L-1. The established methodology was applied to profile presence of targeted estrogens in natural surface water samples. Out of the ten compounds of interest, three free estrogens (E1, E2, E3) and two sulphate estrogens (E1-3S and E2-3S) were found over their MQLs, being in the range of 0.05-0.32 ng L-1.
Collapse
Affiliation(s)
- Fan Huang
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| | - Kersti Karu
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Olesti E, Boccard J, Visconti G, González-Ruiz V, Rudaz S. From a single steroid to the steroidome: Trends and analytical challenges. J Steroid Biochem Mol Biol 2021; 206:105797. [PMID: 33259940 DOI: 10.1016/j.jsbmb.2020.105797] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
For several decades now, the analysis of steroids has been a key tool in the diagnosis and monitoring of numerous endocrine pathologies. Thus, the available methods used to analyze steroids in biological samples have dramatically evolved over time following the rapid pace of technology and scientific knowledge. This review aims to synthetize the advances in steroids' analysis, from classical approaches considering only a few steroids or a limited number of steroid ratios, up to the new steroid profiling strategies (steroidomics) monitoring large sets of steroids in biological matrices. In this context, the use of liquid chromatography coupled to mass spectrometry has emerged as the technique of choice for the simultaneous determination of a high number of steroids, including phase II metabolites, due to its sensitivity and robustness. However, the large dynamic range to be covered, the low natural abundance of some key steroids, the selectivity of the analytical methods, the extraction protocols, and the steroid ionization remain some of the current challenges in steroid analysis. This review provides an overview of the different analytical workflows available depending on the number of steroids under study. Special emphasis is given to sample treatment, acquisition strategy, data processing, steroid identification and quantification using LC-MS approaches. This work also outlines how the availability of steroid standards, the need for complementary analytical strategies and the improvement of calibration approaches are crucial for achieving complete steroidome quantification.
Collapse
Affiliation(s)
- Eulalia Olesti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Gioele Visconti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
12
|
Detection of Three Different Estrogens in Milk Employing SPR Sensors Based on Double Signal Amplification Using Graphene. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
|
14
|
Snow DD, Cassada DA, Biswas S, Malakar A, D'Alessio M, Marshall AHL, Sallach JB. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2020). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1741-1750. [PMID: 32762100 DOI: 10.1002/wer.1429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A review of 79 papers published in 2019 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, antibiotics, anthelmintics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Antibiotics in Agroecosystems, Pharmaceutical Fate and Occurrence, Anthelmintics and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings Newer classes of contaminants include human and veterinary pharmaceuticals Research in nanomaterials show that these also occur in agricultural environments and will likely be topics of future work.
Collapse
Affiliation(s)
- Daniel D Snow
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - David A Cassada
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Saptashati Biswas
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Arindam Malakar
- Nebraska Water Center and Water Sciences Laboratory, Part of the Robert B. Daugherty for Food Institute, University of Nebraska, 1840 N 37th Street, Lincoln, United States, 68583-0844, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, Oxford, MS, USA
| | | | | |
Collapse
|
15
|
Yang T, Huang Y, Zhou Y, Chen S, Wang H, Hu Y, Liu J, Jiang Z, Lu Q, Yin X. Simultaneous quantification of oestrogens and androgens in the serum of patients with benign prostatic hyperplasia by liquid chromatography-Tandem mass spectrometry. Andrologia 2020; 52:e13611. [PMID: 32441855 DOI: 10.1111/and.13611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is a common disease in elderly men. It has been found that the occurrence of BPH was closely related to dysregulated steroid hormones. Here, a rapid, sensitive, accurate and specific method for the quantitative profiling of five androgens in man serum was developed and validated by the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using this method, dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), androsterone (A), dihydrotestosterone (DHT), oestrone (E1) and oestradiol (E2) were quantified in serum from man with and without BPH. BPH patients were characterised by the decreases in DHEA, A4 and T as well as increases in DHT, E2 and E1 in serum. Meanwhile, DHEA and DHT in serum were screened as sensitive biomarkers of BPH patients. This study will provide a new perspective of dysregulated steroid hormones for the diagnosis and prevention of BPH.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuhan Huang
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yinlu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junjie Liu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
van der Berg CL, Venter G, van der Westhuizen FH, Erasmus E. Data on the optimisation of a solid phase extraction method for fractionating estrogen metabolites from small urine volumes. Data Brief 2020; 29:105222. [PMID: 32071992 PMCID: PMC7016251 DOI: 10.1016/j.dib.2020.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 11/14/2022] Open
Abstract
Certain estrogen metabolites have been implicated in the pathophysiology of breast cancer. Moreover, the estrogen metabolite profiles of healthy women and those with (a high risk of) breast cancer differ significantly. The development of an analytical method to determine the relative levels of all the estrogen biotransformation products has been described in van der Berg et al. [1]. An improvement on previously developed methods was the ability to also detect molecules such as sulphate and glucuronide conjugates as well as progesterone, estradiol precursors, and metabolites from the 16-hydroxylation metabolic pathway of estrogens simultaneously with all other estrogen metabolites. The data presented here describe the optimisation of a solid phase extraction method with different fractionation steps for LC-MS/MS analysis of 27 estrogen-related metabolites from small urine volumes. Conditions that were optimised include the elution and washing solvent concentration, the urine, loading, washing, and elution volumes, as well as pH. All raw data used to construct the bar graphs presented in this article are included in the supplementary data file. The data indicated that fractionation was necessary in order to elute estrogen metabolites with different chemical properties at different eluate compositions. Only one of the fractions (containing the less water-soluble metabolites) underwent derivatisation before LC-MS/MS analysis.
Collapse
Key Words
- E1, Estrone
- E2, Estradiol
- E3, Estriol
- ESI, Electrospray ionisation
- Estrogen metabolism
- G, Glucuronide conjugation
- LC, Liquid chromatography
- LC-MS/MS
- M, Methyl conjugation
- MS, Mass spectrometry
- MS/MS, Tandem mass spectrometry
- MeOH, Methanol
- Method optimisation
- OH, Hydroxy
- S, Sulphate conjugation
- SPE, Solid phase extraction
- Solid phase extraction
- v/v, Volume/volume ratio
Collapse
Affiliation(s)
- Carien L van der Berg
- Human Metabolomics, North-West University (Potchefstroom Campus), Potchefstroom, 2531, South Africa
| | - Gerda Venter
- Human Metabolomics, North-West University (Potchefstroom Campus), Potchefstroom, 2531, South Africa
| | | | - Elardus Erasmus
- Human Metabolomics, North-West University (Potchefstroom Campus), Potchefstroom, 2531, South Africa
| |
Collapse
|