1
|
Fussell ED, Kline ND, Bennin E, Hirschbeck SS, Darko A. Chromogenic Detection of the Organophosphorus Nerve Agent Simulant DCP Mediated by Rhodium(II,II) Paddlewheel Complexes. ACS Sens 2024; 9:2325-2333. [PMID: 38666660 DOI: 10.1021/acssensors.3c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Organophosphorus nerve agents (OPNAs) pose a great threat to humanity. Possessing extreme toxicity, rapid lethality, and an unassuming appearance, these chemical warfare agents must be quickly and selectively identified so that treatment can be administered to those affected. Chromogenic detection is the most convenient form of OPNA detection, but current methods suffer from false positives. Here, nitrogenous base adducts of dirhodium(II,II) acetate were synthesized and used as chromogenic detectors of diethyl chlorophosphate (DCP), an OPNA simulant. UV-vis spectrophotometry was used to evaluate the sensitivity and selectivity of the complexes in the detection of DCP. Visual limits of detection (LOD) for DCP were as low as 1.5 mM DCP, while UV-vis-based LODs were as low as 0.113 μM. The dirhodium(II,II) complexes were also tested with several potential interferents, none of which produced a visual color change that could be mistaken for OPNA response. Ultimately, the Rh2(OAc)4(1,8-diazabicyclo[5.4.0]undec-7-ene)2 complex showed the best combination of detection capability and interferent resistance. These results, when taken together, show that dirhodium(II,II) paddlewheel complexes with nitrogenous base adducts can produce instant, selective, and sensitive detection of DCP. It is our aim to further explore and apply this new motif to produce even more capable OPNA sensors.
Collapse
Affiliation(s)
- Eric D Fussell
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Neal D Kline
- Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Ernest Bennin
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Sarah S Hirschbeck
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ampofo Darko
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
2
|
Wahyuni WT, Putra BR, Rahman HA, Anindya W, Hardi J, Rustami E, Ahmad SN. Electrochemical Sensors based on Gold-Silver Core-Shell Nanoparticles Combined with a Graphene/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Paraoxon-ethyl Detection. ACS OMEGA 2024; 9:2896-2910. [PMID: 38250352 PMCID: PMC10795144 DOI: 10.1021/acsomega.3c08349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Herein, a nonenzymatic detection of paraoxon-ethyl was developed by modifying a glassy carbon electrode (GCE) with gold-silver core-shell (Au-Ag) nanoparticles combined with the composite of graphene with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). These core-shell nanoparticles (Au-Ag) were synthesized using a seed-growth method and characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy (HR-TEM) techniques. Meanwhile, the structural properties, surface morphology and topography, and electrochemical characterization of the composite of Au-Ag core-shell/graphene/PEDOT:PSS were analyzed using infrared spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) techniques. Moreover, the proposed sensor for paraoxon-ethyl detection based on Au-Ag core-shell/graphene/PEDOT:PSS modified GCE demonstrates good electrochemical and electroanalytical performance when investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry techniques. It was found that the synergistic effect between Au-Ag core-shell nanoparticles and the composite of graphene/PEDOT:PSS provides a higher conductivity and enhanced electrocatalytic activity for paraoxon-ethyl detection at an optimum pH of 7. At pH 7, the proposed sensor for paraoxon-ethyl detection shows a linear range of concentrations from 0.2 to 100 μM with a limit of detection of 10 nM and high sensitivity of 3.24 μA μM-1 cm-2. In addition, the proposed sensor for paraoxon-ethyl confirmed good reproducibility, with the possibility of being further developed as a disposable electrode. This sensor also displayed good selectivity in the presence of several interfering species such as diazinon, carbaryl, ascorbic acid, glucose, nitrite, sodium bicarbonate, and magnesium sulfate. For practical applications, this proposed sensor was employed for the determination of paraoxon-ethyl in real samples (fruits and vegetables) and showed no significant difference from the standard spectrophotometric technique. In conclusion, this proposed sensor might have a potential to be developed as a platform of electrochemical sensors for pesticide detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
- Tropical
Biopharma Research Center, Institute of Research and Community Empowerment, IPB University, 16680 Bogor,Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research and Innovation Agency, South Tangerang 15315, Banten, Indonesia
| | - Hemas Arif Rahman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Weni Anindya
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Jaya Hardi
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Tadulako University, 94148 Kota Palu,Indonesia
| | - Erus Rustami
- Department
of Physics, Faculty of Mathematics and Natural Sciences, IPB University, 16680 Bogor,Indonesia
| | - Shahrul Nizam Ahmad
- School
of
Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
| |
Collapse
|
3
|
Liquid crystal-based sensor for real-time detection of paraoxon pesticides based on acetylcholinesterase enzyme inhibition. Mikrochim Acta 2023; 190:122. [PMID: 36890280 DOI: 10.1007/s00604-023-05716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
A liquid crystal-based assay (LC) was developed to monitor paraoxon by incorporating a Cu2+ -coated substrate and the inhibitory effect of paraoxon with acetylcholinesterase (AChE). We observed that thiocholine (TCh), a hydrolysate of AChE and acetylthiocholine (ATCh), interfered with the alignment of 5CB films through a reaction between Cu2+ ions and the thiol moiety of TCh. The catalytic activity of AChE was inhibited in the presence of paraoxon due to the irreversible interaction between TCh and paraoxon; consequently, no TCh molecule was available to interact with Cu2+ on the surface. This resulted in a homeotropic alignment of the liquid crystal. The proposed sensor platform sensitively quantified paraoxon with a detection limit of 2.20 ± 0.11 (n = 3) nM within a range of 6 to 500 nM. The specificity and reliability of the assay were verified by measuring paraoxon in the presence of various suspected interfering substances and spiked samples. As a result, the sensor based on LC can potentially be used as a screening tool for accurate evaluation of paraoxon and other organophosphorus compounds.
Collapse
|
4
|
Moradi R, Khalili NP, Septiani NLW, Liu CH, Doustkhah E, Yamauchi Y, Rotkin SV. Nanoarchitectonics for Abused-Drug Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104847. [PMID: 34882957 DOI: 10.1002/smll.202104847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid, accessible, and highly accurate biosensors for the detection of addictive and abused drugs are needed to reduce the adverse personal and societal impacts of addiction. Modern sensors that utilize next-generation technologies, e.g., nanobiotechnology and nanoarchitectonics, have triggered revolutionary progress in the field as they allow accurate detection and tracking of trace levels of major classes of drugs. This paper reviews advances in the field of biosensors for the detection of commonly abused drugs, both prescribed such as codeine and morphine, and illegal narcotics like cocaine.
Collapse
Affiliation(s)
- Rasoul Moradi
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Department of Chemical Engineering, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Nazila Pour Khalili
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Center for Cell Pathology Research, Department of Biological Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Slava V Rotkin
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Dual-mode sensing of biomarkers based on nano 3D Cu-Flo.@AuNPs-electrocatalyzed oxidation of glucose inducing in-situ H 2O 2-generation system. Biosens Bioelectron 2022; 198:113820. [PMID: 34844168 DOI: 10.1016/j.bios.2021.113820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022]
Abstract
A bimodal 3D-electrochemiluminescence (ECL) analysis method was developed, which integrated simpleness, label-free, high-throughput and real time detection together. Firstly, a novel 3D copper-based nanosheet micro-material (Cu-Flo. NMs) coupled with gold nanoparticles/Cysteine (Cu-Flo.@AuNPs-Cys) was prepared to use as the versatile label for both colorimetric and ECL techniques. The 3D-Cu-Flo.@AuNPs-Cys having glucose oxidase-like activity could catalyze glucose to produce H2O2 in situ, which was further found to be capable of exhibiting a 30.95-fold higher ECL-intensity for luminol than bare glassy carbon electrodes (GCE). Taking advantages of the 3D-Cu-Flo.@AuNPs-Cys above, a colorimetric and ECL-channel sensor (GCE/3D-Cu-Flo.@AuNPs-Cys) were constructed simultaneously for glucose detection. The fabricated sensor displayed a wide linear range (Glucose: 0.001-50 mmol L-1, AFP: 2.25 × 10-7-225 ng mL-1), impressive low limit of detection (Glucose: 1.27 × 10-7 mol L-1, AFP: 1.92 × 10-8 ng mL-1, S/N = 3) and acceptable recovery (Glucose: 94% ∼ 104%, AFP: 96.04% ∼ 102.29%) in practical sample. Furthermore, the biosensor showed ultrafast (0.5 min) analysis efficiency, high stability for 6 cyclic potential scans and satisfactory reproducibility for 7 repeated tests. These results demonstrated the proposed 3D dual-modal ECL-biosensor for biomarkers detection had a great potential in clinical diagnostics, promoting the application in biomedical researching and POCT.
Collapse
|
6
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Yin XL, Liu YQ, Gu HW, Zhang Q, Zhang ZW, Li H, Li PW, Zhou Y. Multicolor enzyme-linked immunosorbent sensor for sensitive detection of organophosphorus pesticides based on TMB2+-mediated etching of gold nanorods. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Cha BS, Lee ES, Kim S, Kim JM, Hwang SH, Oh SS, Park KS. Simple colorimetric detection of organophosphorus pesticides using naturally occurring extracellular vesicles. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|