1
|
Guo J, Li L, Chen F, Fu M, Cheng C, Wang M, Hu J, Pei L, Sun J. Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology. Biomolecules 2024; 14:804. [PMID: 39062518 PMCID: PMC11274378 DOI: 10.3390/biom14070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders.
Collapse
Affiliation(s)
- Jing Guo
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Cheng Cheng
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Meizi Wang
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Jun Hu
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| |
Collapse
|
2
|
Gallo M, Ferrari E, Terrazzan A, Brugnoli F, Spisni A, Taccioli C, Aguiari G, Trentini A, Volinia S, Keillor JW, Bergamini CM, Bianchi N, Pertinhez TA. Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines. FEBS J 2023; 290:5411-5433. [PMID: 37597264 DOI: 10.1111/febs.16931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Italy
| | | | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | | | | |
Collapse
|
3
|
Birchenough GMH, Schroeder BO, Sharba S, Arike L, Recktenwald CV, Puértolas-Balint F, Subramani MV, Hansson KT, Yilmaz B, Lindén SK, Bäckhed F, Hansson GC. Muc2-dependent microbial colonization of the jejunal mucus layer is diet sensitive and confers local resistance to enteric pathogen infection. Cell Rep 2023; 42:112084. [PMID: 36753416 PMCID: PMC10404306 DOI: 10.1016/j.celrep.2023.112084] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Intestinal mucus barriers normally prevent microbial infections but are sensitive to diet-dependent changes in the luminal environment. Here we demonstrate that mice fed a Western-style diet (WSD) suffer regiospecific failure of the mucus barrier in the small intestinal jejunum caused by diet-induced mucus aggregation. Mucus barrier disruption due to either WSD exposure or chromosomal Muc2 deletion results in collapse of the commensal jejunal microbiota, which in turn sensitizes mice to atypical jejunal colonization by the enteric pathogen Citrobacter rodentium. We illustrate the jejunal mucus layer as a microbial habitat, and link the regiospecific mucus dependency of the microbiota to distinctive properties of the jejunal niche. Together, our data demonstrate a symbiotic mucus-microbiota relationship that normally prevents jejunal pathogen colonization, but is highly sensitive to disruption by exposure to a WSD.
Collapse
Affiliation(s)
- George M H Birchenough
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Bjoern O Schroeder
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden; Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sinan Sharba
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Christian V Recktenwald
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fabiola Puértolas-Balint
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Mahadevan V Subramani
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karl T Hansson
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bahtiyar Yilmaz
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sara K Lindén
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry & Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Abstract
Mucin-domain glycoproteins comprise a class of proteins whose densely O-glycosylated mucin domains adopt a secondary structure with unique biophysical and biochemical properties. The canonical family of mucins is well-known to be involved in various diseases, especially cancer. Despite this, very little is known about the site-specific molecular structures and biological activities of mucins, in part because they are extremely challenging to study by mass spectrometry (MS). Here, we summarize recent advancements toward this goal, with a particular focus on mucin-domain glycoproteins as opposed to general O-glycoproteins. We summarize proteolytic digestion techniques, enrichment strategies, MS fragmentation, and intact analysis, as well as new bioinformatic platforms. In particular, we highlight mucin directed technologies such as mucin-selective proteases, tunable mucin platforms, and a mucinomics strategy to enrich mucin-domain glycoproteins from complex samples. Finally, we provide examples of targeted mucin-domain glycoproteomics that combine these techniques in comprehensive site-specific analyses of proteins. Overall, this Review summarizes the methods, challenges, and new opportunities associated with studying enigmatic mucin domains.
Collapse
Affiliation(s)
- Valentina Rangel-Angarita
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Transglutaminase 2 moderates the expansion of mouse abdominal aortic aneurysms. JVS Vasc Sci 2021; 2:95-109. [PMID: 34617062 PMCID: PMC8489235 DOI: 10.1016/j.jvssci.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Previously published work has indicated that transcripts encoding transglutaminase 2 (TG2) increase markedly in a rat model of abdominal aortic aneurysm. This study determines whether TG2 and the related TG, factor XIII-A (FXIII-A), protect against aortic aneurysm development in mice. Methods C57BL/6J wild-type, Tgm2 -/- knockout, F13a1 -/- knockout, and Tgm2 -/- /F13a1 -/- double knockout mice were subjected to laparotomy and periaortic application of CaCl2. Results Tgm2 -/- mice showed slightly greater aortic dilatation at 6 weeks after treatment when compared with wild type. However, vessels from Tgm2 -/- mice, but not wild-type mice, continued to dilate up to 6 months after injury and by 24 weeks, a greater number of Tgm2 -/- mice had developed aneurysms (16/17 vs 10/19; P = .008). Laparotomy resulted in a high death rate in F13a1 -/- knockout mice, more frequently from cardiac complications than from hemorrhage, but among F13a1 -/- mice that survived for 6 weeks after CaCl2 treatment, abdominal aortic aneurysm diameter was unaltered relative to wild-type mice. Laparotomy resulted in a higher death rate among Tgm2 -/- /F13a1 -/- double knockout mice, owing to an increased frequency of delayed bleeding. Surprisingly, Tgm2 -/- /F13a1 -/- double knockout mice showed a trend toward decreased dilatation of the aorta 6 weeks after injury, and this finding was replicated in Tgm2 -/- /F13a1 -/- mice subjected to carotid artery injury. Levels of transcripts encoding TG2 were not increased in the aortas of injured wild-type or F13a1 -/- knockout mice relative to uninjured mice, although changes in the levels of other transcripts accorded with previous descriptions of the CaCl2 aneurysm model in mice. Conclusions Knockout of Tgm2, but not F13a1 exacerbates aortic dilatation, suggesting that TG2 confers protection. However, levels of TG2 messenger RNA are not acutely elevated after injury. FXIII-A plays a role in preventing postoperative damage after laparotomy, confirming previous reports that it prevents distal organ damage after trauma. TG2 promotes wound healing after surgery and, in its absence, the bleeding diathesis associated with FXIII-A deficiency is further exposed.
Collapse
|
7
|
Schopfer LM, Onder S, Lockridge O. Evaluation of mass spectrometry MS/MS spectra for the presence of isopeptide crosslinked peptides. PLoS One 2021; 16:e0254450. [PMID: 34242352 PMCID: PMC8270460 DOI: 10.1371/journal.pone.0254450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Isopeptide crosslinked proteins can be the product of transglutaminase or of exposure to organophosphorus toxicants (OP). Transglutaminase links glutamine to lysine with loss of ammonia. OP toxicants induce a link between glutamic acid and lysine with loss of water. Our goal was to establish criteria to distinguish real from false isopeptide crosslinks reported by software searches of mass spectrometry data. We used fragmentation spectra of tryptic peptides from MAP-rich tubulin Sus scrofa as a test system for detection of naturally-occurring isopeptide crosslinks. Data were analyzed with Protein Prospector. Criteria for the assignments included the presence of at least 1 crosslink specific product ion, fragment ions from both peptides, Protein Prospector scores ≥20, and best fit of the MS/MS data to the crosslinked peptide as opposed to a linear peptide. Out of 301,364 spectra, 15 potential transglutaminase-type crosslinked peptide candidates were identified. Manual evaluation of these MS/MS spectra reduced the number to 1 valid crosslink between Q112 of NFH and K368 of Tau. Immunopurification with anti-isopeptide 81D1C2 confirmed that MAP-rich tubulin contained only one isopeptide. Support for this isopeptide bond was obtained by showing that transglutaminase was capable of incorporating dansyl-aminohexyl -QQIV into K368. A model of the KIETHK-QLEAHNR isopeptide was synthesized with the aid of transglutaminase. MS/MS spectra of the model validated our interpretation of the native isopeptide. An OP-induced isopeptide bond between K163 of tubulin alpha-1A and E158 of tubulin beta-4B was induced by treating MAP-rich tubulin with 100 μM chlorpyrifos oxon. This crosslink was supported by the criteria described above and by the presence of diethoxyphospho-lysine 163 in the tubulin alpha-1A peptide. The information obtained in this work is valuable for future studies that aim to understand why exposure to OP is associated with increased risk of neurodegenerative disease.
Collapse
Affiliation(s)
- Lawrence M. Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Seda Onder
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pasternack R, Hils M. Editorial for the special issue on transglutaminases in translation - Novel tools and methods impacting on diagnostics and therapeutics. Anal Biochem 2020; 607:113889. [PMID: 32745540 DOI: 10.1016/j.ab.2020.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Martin Hils
- Zedira GmbH, Roesslerstraße 83, 64293, Darmstadt, Germany.
| |
Collapse
|