1
|
Li Y, You ZH, Yuan Y, Mi CG, Huang YA, Yi HC, Hou LX. Integrated Knowledge Graph and Drug Molecular Graph Fusion via Adversarial Networks for Drug-Drug Interaction Prediction. J Chem Inf Model 2024; 64:8361-8372. [PMID: 39475566 DOI: 10.1021/acs.jcim.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
The Co-administration of multiple drugs can enhance the efficacy of disease treatment by reducing drug resistance and side effects. However, it also raises the risk of adverse drug interactions, presenting a challenging problem in healthcare. Various approaches have been developed to predict drug-drug interactions (DDIs) by leveraging both knowledge graphs and drug attribute information. While these methods have shown promise, they often fail to effectively capture correlations between biomedical information in the knowledge graph and drug properties. This work introduces a novel end-to-end DDI predictor framework based on generative adversarial networks. This framework utilizes a message-passing neural network to capture molecular structure information while employing the knowledge-aware graph attention network to capture the representation of drugs in the knowledge graph through considering the importance of different multihop neighbor nodes and relationships. The dual generative adversarial networks employ two generators and two discriminators in knowledge graph embedding and molecular topology embedding for adversarial training to capture the interrelations and complementary knowledge between molecular structure information and semantic information from the knowledge graph. comprehensive experiments have demonstrated that the proposed method outperforms state-of-the-art algorithms in binary classification, with improvements of 1.0% in accuracy, 0.45% in area under the receiver operating characteristic curve (AUC), 0.24% in area under the precision-recall curve (AUPR), and 0.98% in F1 score. Furthermore, for multiclass classification tasks, improvements were observed across various evaluation metrics, including 0.9% in accuracy, 0.25% in macro precision, 0.2% in macro recall, and 0.28% in macro F1. Additionally, ablation studies were conducted to showcase the effectiveness and robustness of our method in DDI prediction tasks.
Collapse
Affiliation(s)
- Yu Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Yang Yuan
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou213164, China
| | - Cheng-Gang Mi
- Foreign Language and Literature Institute, Xi'an International Studies University, Xi'an710129, China
| | - Yu-An Huang
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Hai-Cheng Yi
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Lin-Xuan Hou
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| |
Collapse
|
2
|
Wang M, Jia J, Xu F, Zhou H, Liu Y, Yu B. Res-GCN: Identification of protein phosphorylation sites using graph convolutional network and residual network. Comput Biol Chem 2024; 112:108183. [PMID: 39208554 DOI: 10.1016/j.compbiolchem.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability.
Collapse
Affiliation(s)
- Minghui Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Jihua Jia
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Fei Xu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Hongyan Zhou
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yushuang Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China.
| | - Bin Yu
- School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China; School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Hauben M, Rafi M, Abdelaziz I, Hassanzadeh O. Knowledge Graphs in Pharmacovigilance: A Scoping Review. Clin Ther 2024; 46:544-554. [PMID: 38981792 DOI: 10.1016/j.clinthera.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE To critically assess the role and added value of knowledge graphs in pharmacovigilance, focusing on their ability to predict adverse drug reactions. METHODS A systematic scoping review was conducted in which detailed information, including objectives, technology, data sources, methodology, and performance metrics, were extracted from a set of peer-reviewed publications reporting the use of knowledge graphs to support pharmacovigilance signal detection. FINDINGS The review, which included 47 peer-reviewed articles, found knowledge graphs were utilized for detecting/predicting single-drug adverse reactions and drug-drug interactions, with variable reported performance and sparse comparisons to legacy methods. IMPLICATIONS Research to date suggests that knowledge graphs have the potential to augment predictive signal detection in pharmacovigilance, but further research using more reliable reference sets of adverse drug reactions and comparison with legacy pharmacovigilance methods are needed to more clearly define best practices and to establish their place in holistic pharmacovigilance systems.
Collapse
Affiliation(s)
- Manfred Hauben
- Department of Family and Community Medicine, New York Medical College, Valhalla, New York; Truliant Consulting, Baltimore, Maryland
| | - Mazin Rafi
- Department of Statistics, Rutgers University, Piscataway, New Jersey.
| | | | | |
Collapse
|
4
|
Hauben M, Rafi M. Knowledge Graphs in Pharmacovigilance: A Step-By-Step Guide. Clin Ther 2024; 46:538-543. [PMID: 38670887 DOI: 10.1016/j.clinthera.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE This work aims to demystify Knowledge Graphs (KGs) in pharmacovigilance (PV). It complements the scoping review within this issue. By bridging knowledge gaps and stimulating interest, further engagement with this topic by pharmacovigilance professionals will be facilitated. METHODS We elucidate fundamental KGs concepts and terminology, followed by delineating a sequence of implementation steps: use case definition, data type selection, data sourcing, KG construction, KG embedding, and deriving actionable insights. Information technology options and limitations are also explored. FINDINGS KGs in pharmacovigilance is a multi-disciplinary field involving information technology, machine learning, biology, and PV. We were able to synthesize the relevant core concepts to create an intuitive exposition of KGs in PV. IMPLICATIONS This work demystifies KGs with a pharmacovigilance focus, preparing readers for the accompanying in-depth scoping review. that follows. It lays the groundwork for advancing PV research and practice by emphasizing the importance of engaging with vigilance experts. This approach enhances knowledge sharing and collaboration, contributing to more effective and informed pharmacovigilance efforts and optimal assessment and deployment of KGs in PV.
Collapse
Affiliation(s)
| | - Mazin Rafi
- Department of Statistics, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
5
|
Lin J, Hong B, Cai Z, Lu P, Lin K. MASMDDI: multi-layer adaptive soft-mask graph neural network for drug-drug interaction prediction. Front Pharmacol 2024; 15:1369403. [PMID: 38831885 PMCID: PMC11144894 DOI: 10.3389/fphar.2024.1369403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Accurately predicting Drug-Drug Interaction (DDI) is a critical and challenging aspect of the drug discovery process, particularly in preventing adverse reactions in patients undergoing combination therapy. However, current DDI prediction methods often overlook the interaction information between chemical substructures of drugs, focusing solely on the interaction information between drugs and failing to capture sufficient chemical substructure details. To address this limitation, we introduce a novel DDI prediction method: Multi-layer Adaptive Soft Mask Graph Neural Network (MASMDDI). Specifically, we first design a multi-layer adaptive soft mask graph neural network to extract substructures from molecular graphs. Second, we employ an attention mechanism to mine substructure feature information and update latent features. In this process, to optimize the final feature representation, we decompose drug-drug interactions into pairwise interaction correlations between the core substructures of each drug. Third, we use these features to predict the interaction probabilities of DDI tuples and evaluate the model using real-world datasets. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods in DDI prediction. Furthermore, MASMDDI exhibits excellent performance in predicting DDIs of unknown drugs in two tasks that are more aligned with real-world scenarios. In particular, in the transductive scenario using the DrugBank dataset, the ACC and AUROC and AUPRC scores of MASMDDI are 0.9596, 0.9903, and 0.9894, which are 2% higher than the best performing baseline.
Collapse
Affiliation(s)
- Junpeng Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Binsheng Hong
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Zhongqi Cai
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Ping Lu
- School of Economics and Management, Xiamen University of Technology, Xiamen, China
| | - Kaibiao Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
6
|
Zhang Y, Deng Z, Xu X, Feng Y, Junliang S. Application of Artificial Intelligence in Drug-Drug Interactions Prediction: A Review. J Chem Inf Model 2024; 64:2158-2173. [PMID: 37458400 DOI: 10.1021/acs.jcim.3c00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Zengqian Deng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Xiaoyu Xu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Yinfei Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Shang Junliang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, China
| |
Collapse
|
7
|
Lin S, Mao X, Hong L, Lin S, Wei DQ, Xiong Y. MATT-DDI: Predicting multi-type drug-drug interactions via heterogeneous attention mechanisms. Methods 2023; 220:1-10. [PMID: 37858611 DOI: 10.1016/j.ymeth.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi‑type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.
Collapse
Affiliation(s)
- Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China; School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, China; Peng Cheng National Laboratory, Shenzhen 518055, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
| |
Collapse
|
8
|
Liu X, Yang H, Ai C, Ding Y, Guo F, Tang J. MVML-MPI: Multi-View Multi-Label Learning for Metabolic Pathway Inference. Brief Bioinform 2023; 24:bbad393. [PMID: 37930024 DOI: 10.1093/bib/bbad393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Development of robust and effective strategies for synthesizing new compounds, drug targeting and constructing GEnome-scale Metabolic models (GEMs) requires a deep understanding of the underlying biological processes. A critical step in achieving this goal is accurately identifying the categories of pathways in which a compound participated. However, current machine learning-based methods often overlook the multifaceted nature of compounds, resulting in inaccurate pathway predictions. Therefore, we present a novel framework on Multi-View Multi-Label Learning for Metabolic Pathway Inference, hereby named MVML-MPI. First, MVML-MPI learns the distinct compound representations in parallel with corresponding compound encoders to fully extract features. Subsequently, we propose an attention-based mechanism that offers a fusion module to complement these multi-view representations. As a result, MVML-MPI accurately represents and effectively captures the complex relationship between compounds and metabolic pathways and distinguishes itself from current machine learning-based methods. In experiments conducted on the Kyoto Encyclopedia of Genes and Genomes pathways dataset, MVML-MPI outperformed state-of-the-art methods, demonstrating the superiority of MVML-MPI and its potential to utilize the field of metabolic pathway design, which can aid in optimizing drug-like compounds and facilitating the development of GEMs. The code and data underlying this article are freely available at https://github.com/guofei-tju/MVML-MPI. Contact: jtang@cse.sc.edu, guofei@csu.edu.com or wuxi_dyj@csj.uestc.edu.cn.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Hongpeng Yang
- Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Chengwei Ai
- Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Fei Guo
- Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Nanshan 518055, China
| |
Collapse
|
9
|
Lin X, Dai L, Zhou Y, Yu ZG, Zhang W, Shi JY, Cao DS, Zeng L, Chen H, Song B, Yu PS, Zeng X. Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction. Brief Bioinform 2023:bbad235. [PMID: 37401373 DOI: 10.1093/bib/bbad235] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.
Collapse
Affiliation(s)
- Xuan Lin
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Lichang Dai
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Yafang Zhou
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Zu-Guo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, China
| | - Jian-Yu Shi
- Northwestern Polytechnical University, Xian, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, China
| | - Li Zeng
- AIDD department of Yuyao Biotech, Shanghai, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, 410013 Changsha, P. R. China
| | - Bosheng Song
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Philip S Yu
- University of Illinois at Chicago and also holds the Wexler Chair in Information Technology
| | - Xiangxiang Zeng
- College of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
10
|
Liao B, Liang J, Guo B, Jia X, Lu J, Zhang T, Sun R. ILSHIP: An interpretable and predictive model for hypothyroidism. Comput Biol Med 2023; 154:106578. [PMID: 36738707 DOI: 10.1016/j.compbiomed.2023.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
Hypothyroidism is one of the common endocrine diseases, and its incidence is increasing year by year. Due to the insidious nature of this disease, it often leads to delayed treatment and even misdiagnosis. This paper proposes ILSHIP, an interpretable predictive model for hypothyroidism, to reduce its diagnostic complexity as well as improve the predictive performance and interpretability of existing models. First, the ILSHIP prediction model was built based on label encoding, missing value processing, feature selection, and data enhancement of the dataset. Second, the comprehensive performance of ILSHIP was compared with twelve existing related study models and eleven mainstream models, such as XGBoost and MLP. The experimental results showed that, based on the optimal hyperparameters the ILSHIP model can achieve 99.392%, 99.437%, 99.348%, 99.381%, and 99.960% in accuracy, recall, specificity, F1, and AUC, respectively. The accuracy of the ILSHIP model was about 0.7%-15.4% higher than the existing models. By introducing the SHAP framework into the ILSHIP model, important features affecting hypothyroidism such as thyroid stimulating hormone (TSH) and free thyroxine index (FTI) were also identified, and the influencing factors for different individuals were finally analyzed to provide a basis for medical personnel to monitor the condition.
Collapse
Affiliation(s)
- Bin Liao
- College of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, PR China
| | - Jinming Liang
- College of Statistics and Data Science, Xinjiang University of Finance and Economics, Urumqi, 830012, PR China.
| | - Binglei Guo
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, 441053, PR China
| | - Xiaoyao Jia
- College of Statistics and Data Science, Xinjiang University of Finance and Economics, Urumqi, 830012, PR China
| | - Jiarong Lu
- College of Statistics and Data Science, Xinjiang University of Finance and Economics, Urumqi, 830012, PR China
| | - Tao Zhang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, PR China
| | - Ruina Sun
- College of Statistics and Data Science, Xinjiang University of Finance and Economics, Urumqi, 830012, PR China; Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, PR China; School of Networks Security, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
11
|
EMSI-BERT: Asymmetrical Entity-Mask Strategy and Symbol-Insert Structure for Drug–Drug Interaction Extraction Based on BERT. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drug-drug interaction (DDI) extraction has seen growing usage of deep models, but their effectiveness has been restrained by limited domain-labeled data, a weak representation of co-occurring entities, and poor adaptation of downstream tasks. This paper proposes a novel EMSI-BERT method for drug–drug interaction extraction based on an asymmetrical Entity-Mask strategy and a Symbol-Insert structure. Firstly, the EMSI-BERT method utilizes the asymmetrical Entity-Mask strategy to address the weak representation of co-occurring entity information using the drug entity dictionary in the pre-training BERT task. Secondly, the EMSI-BERT method incorporates four symbols to distinguish different entity combinations of the same input sequence and utilizes the Symbol-Insert structure to address the week adaptation of downstream tasks in the fine-tuning stage of DDI classification. The experimental results showed that EMSI-BERT for DDI extraction achieved a 0.82 F1-score on DDI-Extraction 2013, and it improved the performances of the multi-classification task of DDI extraction and the two-classification task of DDI detection. Compared with baseline Basic-BERT, the proposed pre-training BERT with the asymmetrical Entity-Mask strategy could obtain better effects in downstream tasks and effectively limit “Other” samples’ effects. The model visualization results illustrated that EMSI-BERT could extract semantic information at different levels and granularities in a continuous space.
Collapse
|
12
|
Hong E, Jeon J, Kim HU. Recent development of machine learning models for the prediction of drug-drug interactions. KOREAN J CHEM ENG 2023; 40:276-285. [PMID: 36748027 PMCID: PMC9894510 DOI: 10.1007/s11814-023-1377-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023]
Abstract
Polypharmacy, the co-administration of multiple drugs, has become an area of concern as the elderly population grows and an unexpected infection, such as COVID-19 pandemic, keeps emerging. However, it is very costly and time-consuming to experimentally examine the pharmacological effects of polypharmacy. To address this challenge, machine learning models that predict drug-drug interactions (DDIs) have actively been developed in recent years. In particular, the growing volume of drug datasets and the advances in machine learning have facilitated the model development. In this regard, this review discusses the DDI-predicting machine learning models that have been developed since 2018. Our discussion focuses on dataset sources used to develop the models, featurization approaches of molecular structures and biological information, and types of DDI prediction outcomes from the models. Finally, we make suggestions for research opportunities in this field.
Collapse
Affiliation(s)
- Eujin Hong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Junhyeok Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141 Korea
| |
Collapse
|
13
|
Predicting drug-drug adverse reactions via multi-view graph contrastive representation model. APPL INTELL 2023. [DOI: 10.1007/s10489-022-04372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Lin S, Zhang G, Wei DQ, Xiong Y. DeepPSE: Prediction of polypharmacy side effects by fusing deep representation of drug pairs and attention mechanism. Comput Biol Med 2022; 149:105984. [PMID: 35994933 DOI: 10.1016/j.compbiomed.2022.105984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022]
Abstract
Polypharmacy (multiple use of drugs) is an effective strategy for combating complex or co-existing diseases. However, a major consequence of polypharmacy is a higher risk of adverse side effects due to drug-drug interactions, which are rare and observed in relatively small clinical testing. Thus, identification of polypharmacy side effects remains challenging. Here, we propose a deep learning-based method, DeepPSE, to predict polypharmacy side effects in an end-to-end way. DeepPSE is composed of two main modules. First, multiple types of neural networks are constructed and fused to learn the deep representation of a drug pair. Second, the encoder block of transformer that includes self-attention mechanism is built to get latent features, which are further fed into the fully connected layer to predict polypharmacy side effects of drug pairs. Further, DeepPSE is compared with five baseline or state-of-the-art methods on a benchmark dataset of 964 types of polypharmacy side effects across 63473 drug pairs. Experimental results demonstrate that DeepPSE achieves better performance than that of all five methods. The source codes and data are available at https://github.com/ShenggengLin/DeepPSE.
Collapse
Affiliation(s)
- Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangwei Zhang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China.
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| |
Collapse
|