1
|
Liu H, Huang J, Zhang H, Xi S, Luo T, Jiang X. Effect and mechanism of Mn 2+ on urease activity during anaerobic biological treatment of landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41290-41300. [PMID: 38849617 DOI: 10.1007/s11356-024-33907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
As a crucial hydrolytic enzyme, urease plays a vital role in anaerobic biological treatment. It is well-known that manganese ions are abundant in landfill leachate, but their concentration fluctuates significantly. However, few studies have investigated the effect and mechanism of different concentrations of Mn2+ on urease activity during anaerobic biological treatment of landfill leachate. This paper aimed to investigate the effects and mechanisms of different concentrations of Mn2+ on urease activity. The results showed that an appropriate amount of Mn2+ could significantly enhance urease activity, while a high concentration of Mn2+ could inhibit it. Insight into the mechanisms behind this phenomenon, various methods such as Zeta potential, particle size, ultraviolet spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and statistical analysis were employed in our study. Research suggested that, on one hand, Mn2+ may form hydrogen bonds with the side chain amino or carboxyl groups of urease amino acid residues, affecting the structure of urease through hydrogen bonding. Additionally, Mn2+ also binds to urease through hydrophobic interactions. On the other hand, the C-OH and C-N functional groups in urease have a strong affinity for Mn2+, and changes in these functional groups can greatly enhance the activity of urease. Furthermore, under the action of high concentrations of Mn2+, while the structure of urease becomes more stable, there is also a steric hindrance phenomenon that affects the substrate from entering the catalytic center. Therefore, studying the mechanism of Mn2+ affecting urease activity has significant biological significance and provides a new perspective for exploring the impact of metals on anaerobic bioprocessing of landfill leachate.
Collapse
Affiliation(s)
- Hao Liu
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Jian Huang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Hua Zhang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Shanshan Xi
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China.
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China.
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China.
| | - Tao Luo
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Xinqin Jiang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| |
Collapse
|
2
|
Sindi AM, Zaman U, Saleh EAM, Kassem AF, Rahman KU, Khan SU, Alharbi M, Rizg WY, Omar KM, Majrashi MAA, Safhi AY, Abdelrahman EA. Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications. Int J Biol Macromol 2024; 259:129190. [PMID: 38185304 DOI: 10.1016/j.ijbiomac.2023.129190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Urease is one of the most significant enzymes in the industry. The objective of this research was to isolate and partially purify urease from Vicia sativa seeds with urease characterization. With a 6.4 % yield, the purification fold was 9.0. By using chromatography, it was determined that the isolated urease had a molecular weight of 55 kDa. The maximum urease activity was found following a 60-s incubation period at 40 °C and pH 8. The activity of urease was significantly boosted by a mean of calcium, barium, DL-dithiothreitol, Na2EDTA, and citrate (16.9, 26.6, 18.6, 13.6, and 31 %), respectively. But nickel and mercury caused inhibitory effects and completely inhibited urease activity, indicating the presence of a thiol (-SH) group in the enzyme active site. The Arrhenius plot was used to analyze the thermodynamic constants of activation, Ea, ΔH*, ΔG*, and ΔS*. The results showed that the values were 30 kJ/mol, 93.14 kJ/mol, 107.17 kJ/mol/K, and -40.80 J/mol/K, respectively. The significance of urease extraction from various sources may contribute to our understanding of the metabolism of urea in plants. The current report has novelty as it explained for the first time the kinetics and thermodynamics of hydrolysis of urea and inactivation of urease from V. sativa seeds.
Collapse
Affiliation(s)
- Amal M Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Asmaa F Kassem
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Khalil Ur Rahman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Shahid Ullah Khan
- Integrative Science Centre of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KP, Pakistan
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled Mohamed Omar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|