1
|
Chen Y, Gong C, Chen K, Wang Z, He M, Wang P, Chen K, Jiao Y, Yang Y. G-quadruplex DNA-based colorimetric biosensor for the ultrasensitive visual detection of strontium ions using MnO 2 nanorods as oxidase mimetics. Mikrochim Acta 2024; 191:213. [PMID: 38512701 DOI: 10.1007/s00604-024-06293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Strontium-90 (90Sr) is a major radioactive component that has attracted great attention, but its detection remains challenging since there are no specific energy rays indicative of its presence. Herein, a biosensor that is capable of rapidly detecting Sr2+ ions is demonstrated. Simple colorimetric method for sensitive detection of Sr2+ with the help of single-stranded DNA was developed by preparing MnO2 nanorods as oxidase mimic catalysis 3,3',5,5'-tetramethylbenzidine (TMB). Under weakly acidic conditions, MnO2 exhibited a strong oxidase-mimicking activity to oxidize colorless TMB into blue oxidation products (oxTMB) with discernible absorbance signals. Nevertheless, the introduction of a guanine-rich DNA aptamer inhibited MnO2-mediated TMB oxidation and reduced oxTMB formation, resulting in blue fading and diminished absorbance. Upon the addition of strontium ions to the system, the aptamers formed a stable G-quadruplex structure with strontium ions, thereby restoring the oxidase-mimicking activity of MnO2. Under the best experimental conditions, the absorbance exhibits a linear relationship with the Sr2+ concentration within the range 0.01-200 μM, with a limit of detection of 0.0028 µM. When the concentration of Sr2+ from 10-8 to 10-6 mol L-1, a distinct color change gradient could be observed in paper-based sensor. We successfully applied this approach to determine Sr2+ in natural water samples, obtaining recoveries ranging from 97.6 to 103% with a relative standard deviation of less than 5%. By providing technical solutions for detection, our work contributed to the effective monitoring of transportation of radioactive Sr in the environment.
Collapse
Affiliation(s)
- Yiting Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chunhui Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kaiwei Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ziwei Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Manli He
- Department of General Education, Army Engineering University of PLA, Nanjing, 211101, China
| | - Peng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Jiao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|