Hall D, Flechsig H, Sumikama T. Computational biophysics of atomic force microscopy-an IUPAB-sponsored workshop.
Biophys Rev 2023;
15:2041-2044. [PMID:
38192340 PMCID:
PMC10771402 DOI:
10.1007/s12551-023-01170-6]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Atomic Force Microscopy (AFM) is a structural determination technique that involves 'prodding' surfaces with a nanometer sized needle with concomitant measurement of the resisting force. Due to its ability to interrogate the nanometer-to-micrometer size range, AFM is especially suited to the structural analysis of everything from biopolymers to cells and, as such, has become an important biophysical method. As AFM was only invented in 1986 it is relatively less scientifically developed than other structural techniques, such as NMR, X-ray crystallography and electron microscopy, that have a longer history of usage. In September of 2022 the first workshop of its kind was held to examine modern computational methods useful for simulating and analysing bioAFM experiments. Sponsored by a small IUPAB workshop grant, the three day meeting was of the hybrid (joint online /in person) type and had presenting participants based in Australia, UK, Finland, Thailand, South Korea, Vietnam and Japan. Each invited speaker was asked to deliver a lecture composed of half educational material (pitched at the level of an advanced postgraduate student) and half cutting edge research material (gathered from their own studies). IUPAB funds were used to invite young researchers (postgraduate students and early career scientists) from both within Japan and countries in the near asian region who had an interest in learning about the theoretical and experimental basis of the AFM technique. This Editorial describes the workshop and introduces the written contributions from the invited lecturers.
Collapse