1
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
2
|
Li Y, He B, Gao J, Liu QS, Liu R, Qu G, Shi J, Hu L, Jiang G. Methylmercury exposure alters RNA splicing in human neuroblastoma SK-N-SH cells: Implications from proteomic and post-transcriptional responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:213-221. [PMID: 29554569 DOI: 10.1016/j.envpol.2018.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The neurotoxic effects of methylmercury (MeHg) have been intensively studied. However, the molecular mechanisms responsible for the neurotoxicity of MeHg are not fully understood. To decipher these mechanisms, proteomic and high-throughput mRNA sequencing (RNA-seq) technique were utilized, comprehensively evaluating the cellular responses of human neuroblastoma SK-N-SH cells to MeHg exposure. Proteomic results revealed that MeHg exposure interfered with RNA splicing via splicesome, along with the known molecular mechanisms of mercury-related neurotoxicity (e.g. oxidative stress, protein folding, immune system processes, and cytoskeletal organization). The effects of MeHg on RNA splicing were further verified using RNA-seq. Compared to control, a total of 658 aberrant RNA alternative splicing (AS) events were observed after MeHg exposure. Proteomics and RNA-seq results also demonstrated that mercury chloride (HgCl2) influenced the expression levels of several RNA splicing related proteins and 676 AS events compared to control. These results suggested that RNA splicing could be a new molecular mechanism involved in MeHg and HgCl2 neurotoxicity.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiejun Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Runzeng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Kumar S, Cruz E, Joshi S, Patel A, Jahan R, Batra SK, Jain M. Genetic variants of mucins: unexplored conundrum. Carcinogenesis 2017; 38:671-679. [PMID: 27838635 DOI: 10.1093/carcin/bgw120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
Alternative gene splicing, occurring ubiquitously in multicellular organisms can produce several protein isoforms with putatively different functions. The enormously extended genomic structure of mucin genes characterized by the presence of multiple exons encoding various domains may result in functionally diverse repertoire of mucin proteins due to alternative splicing. Splice variants (Svs) and mutations in mucin genes have been observed in various cancers and shown to participate in cancer progression and metastasis. Although several mucin Svs have been identified, their potential functions remain largely unexplored with the exception of the Svs of MUC1 and MUC4. A few studies have examined the expression of MUC1 and MUC4 Svs in cancer and indicated their potential involvement in promoting cancer cell proliferation, invasion, migration, angiogenesis and inflammation. Herein we review the current understanding of mucin Svs in cancer and inflammation and discuss the potential impact of splicing in generating a functionally diverse repertoire of mucin gene products. We also performed mutational analysis of mucin genes across five major cancer types in International Cancer Genome Consortium database and found unequal mutational rates across the panel of cancer-associated mucins. Although the functional role of mucins in the pathobiology of various malignancies and their utility as diagnostic and therapeutic targets remain undisputed, these attributes need to be reevaluated in light of the potentially unique functions of disease-specific genetic variants of mucins. Thus, the expressional and functional characterization of the genetic variants of mucins may provide avenues to fully exploit their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biochemistry and Molecular Biology
| | - Eric Cruz
- Department of Biochemistry and Molecular Biology
| | | | - Asish Patel
- Department of Biochemistry and Molecular Biology
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology.,Eppley Institute for Research in Cancer and Allied Diseases.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Quantitative analysis of FJ 194940.1 gene expression in colon cancer and its association with clinicopathological parameters. Contemp Oncol (Pozn) 2013; 17:45-50. [PMID: 23788961 PMCID: PMC3685339 DOI: 10.5114/wo.2013.33773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/25/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022] Open
Abstract
Aim of the study The FJ 194940.1 gene is located on chromosome 1 and consists of 6 exons and 5 introns. The gene undergoes alternative splicing and its isoforms appear during cancer development. Evidence suggests that expression of FJ 194940.1 splice variants relate to colorectal cancer progression. This paper discusses the quantitative analysis of the exon V expression level of FJ 194940.1 in colon cancer. The aim of the study is to carry out quantitative analysis by real-time PCR in a series of 102 colon cancer samples that had previously shown presence of exon V expression. To compare the exon V expression level with certain histological parameters and clinical staging of the neoplasm in order to assess its potential role as a prognostic factor in colon cancer. Material and methods Tissue specimens of colorectal cancer were obtained from the Oncological Centre of Lodz, Poland.Total RNA isolation was performed in accordance with the protocol enclosed in the Total RNA Prep Plus Minicolumn Kit (A&A Biotechnology, Poland). Reverse Transcriptase-PCR reaction was carried out using Enhanced Avian HSRT-PCR Kit, Sigma, according to the manufacturer's protocol.. Presence of cDNA in each sample was checked by PCR amplification of β-actin. Only samples showing the PCR product of this housekeeping gene were included in further tests. The amount of FJ 194940.1 transcript containing exon V was analysed by means of real-time PCR. Results Exon V expression level is not significantly related to any clinicopathological features in colon cancer. However, there was a tendency towards a lower exon V expression level in a group of cases where vessel invasion was present (p = 0.0697). Additionally, the risk of death in patients with a low exon V expression level was more than two times higher when compared to patients with a high exon V expression level. Conclusions FJ 194940.1 gene expression correlates with cancer progression independently of analysed clinicopathological parameters.
Collapse
|
5
|
Jiang Z, Applegate TJ, Lossie AC. Cloning, annotation and developmental expression of the chicken intestinal MUC2 gene. PLoS One 2013; 8:e53781. [PMID: 23349743 PMCID: PMC3549977 DOI: 10.1371/journal.pone.0053781] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/04/2012] [Indexed: 01/28/2023] Open
Abstract
Intestinal mucin 2 (MUC2) encodes a heavily glycosylated, gel-forming mucin, which creates an important protective mucosal layer along the gastrointestinal tract in humans and other species. This first line of defense guards against attacks from microorganisms and is integral to the innate immune system. As a first step towards characterizing the innate immune response of MUC2 in different species, we report the cloning of a full-length, 11,359 bp chicken MUC2 cDNA, and describe the genomic organization and functional annotation of this complex, 74.5 kb locus. MUC2 contains 64 exons and demonstrates distinct spatiotemporal expression profiles throughout development in the gastrointestinal tract; expression increases with gestational age and from anterior to posterior along the gut. The chicken protein has a similar domain organization as the human orthologue, with a signal peptide and several von Willebrand domains in the N-terminus and the characteristic cystine knot at the C-terminus. The PTS domain of the chicken MUC2 protein spans ∼1600 amino acids and is interspersed with four CysD motifs. However, the PTS domain in the chicken diverges significantly from the human orthologue; although the chicken domain is shorter, the repetitive unit is 69 amino acids in length, which is three times longer than the human. The amino acid composition shows very little similarity to the human motif, which potentially contributes to differences in the innate immune response between species, as glycosylation across this rapidly evolving domain provides much of the musical barrier. Future studies of the function of MUC2 in the innate immune response system in chicken could provide an important model organism to increase our understanding of the biological significance of MUC2 in host defense and highlight the potential of the chicken for creating new immune-based therapies.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Todd J. Applegate
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Amy C. Lossie
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
6
|
Yuasa K, Kurita J, Kawana M, Kiryu I, Oseko N, Sano M. Development of mRNA-specific RT-PCR for the detection of koi herpesvirus (KHV) replication stage. DISEASES OF AQUATIC ORGANISMS 2012; 100:11-18. [PMID: 22885509 DOI: 10.3354/dao02499] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An mRNA-specific reverse transcription (RT)-PCR primer set spanning the exon junction of a spliced putative terminase gene in the koi herpesvirus (KHV) was developed to detect the replicating stage of the virus. The proposed RT-PCR amplified a target gene from the RNA template, but not from a DNA template extracted from common carp brain (CCB) cells infected with KHV. In addition, the RT-PCR did not amplify the target gene of templates extracted from specific cell lines infected with either CyHV-1 or CyHV-2. RT-PCR detected mRNA from the scales of koi experimentally infected with KHV at 24 h post exposure (hpe). However, unlike conventional PCR, RT-PCR could not detect KHV DNA in fish at 0 hpe. The results indicate that the RT-PCR developed in this study is mRNA-specific and that the assay can detect the replicating stage of KHV from both fish and cultured cells infected with the virus.
Collapse
Affiliation(s)
- Kei Yuasa
- National Research Institute of Aquaculture, Fisheries Research Agency, Minamiise, Mie 516-0193, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Jeong YH, Kim MC, Ahn EK, Seol SY, Do EJ, Choi HJ, Chu IS, Kim WJ, Kim WJ, Sunwoo Y, Leem SH. Rare exonic minisatellite alleles in MUC2 influence susceptibility to gastric carcinoma. PLoS One 2007; 2:e1163. [PMID: 18000536 PMCID: PMC2065792 DOI: 10.1371/journal.pone.0001163] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 10/16/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mucins are the major components of mucus and their genes share a common, centrally-located region of sequence that encodes tandem repeats. Mucins are well known genes with respect to their specific expression levels; however, their genomic levels are unclear because of complex genomic properties. In this study, we identified eight novel minisatellites from the entire MUC2 region and investigated how allelic variation in these minisatellites may affect susceptibility to gastrointestinal cancer. METHODOLOGY/PRINCIPLE FINDINGS We analyzed genomic DNA from the blood of normal healthy individuals and multi-generational family groups. Six of the eight minisatellites exhibited polymorphism and were transmitted meiotically in seven families, following Mendelian inheritance. Furthermore, a case-control study was performed that compared genomic DNA from 457 cancer-free controls with DNA from individuals with gastric (455), colon (192) and rectal (271) cancers. A statistically significant association was identified between rare exonic MUC2-MS6 alleles and the occurrence of gastric cancer: odds ratio (OR), 2.56; 95% confidence interval (CI), 1.31-5.04; and p = 0.0047. We focused on an association between rare alleles and gastric cancer. Rare alleles were divided into short (40, 43 and 44) and long (47, 50 and 54), according to their TR (tandem repeats) lengths. Interestingly, short rare alleles were associated with gastric cancer (OR = 5.6, 95% CI: 1.93-16.42; p = 0.00036). Moreover, hypervariable MUC2 minisatellites were analyzed in matched blood and cancer tissue from 28 patients with gastric cancer and in 4 cases of MUC2-MS2, minisatellites were found to have undergone rearrangement. CONCLUSIONS/SIGNIFICANCE Our observations suggest that the short rare MUC2-MS6 alleles could function as identifiers for risk of gastric cancer. Additionally, we suggest that minisatellite instability might be associated with MUC2 function in cancer cells.
Collapse
Affiliation(s)
- Yun Hee Jeong
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Min Chan Kim
- Department of Surgery, College of Medicine, Dong-A University, Busan, Korea
| | - Eun-Kyung Ahn
- Department of Biological Science, Dong-A University, Busan, Korea
| | - So-Young Seol
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Eun-Ju Do
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Hong-Jo Choi
- Department of Surgery, College of Medicine, Dong-A University, Busan, Korea
| | - In-Sun Chu
- Medical Genomics Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, College of Medicine, Kangwon National University, Chuncheon, Kangwon-Do, Korea
| | - Yangil Sunwoo
- Department of Biological Science, Dong-A University, Busan, Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan, Korea
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 2006; 7:325. [PMID: 17192196 PMCID: PMC1769375 DOI: 10.1186/1471-2164-7-325] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 12/27/2006] [Indexed: 12/16/2022] Open
Abstract
Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer. Conclusion Differential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility.
Collapse
|
9
|
Lund CV, Popkov M, Magnenat L, Barbas CF. Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology. Mol Cell Biol 2005; 25:9082-91. [PMID: 16199884 PMCID: PMC1265768 DOI: 10.1128/mcb.25.20.9082-9091.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Signaling through the ErbB family of tyrosine kinase receptors in normal and cancer-derived cell lines contributes to cell growth and differentiation. In this work, we altered the levels of ErbB2 and ErbB3 receptors, individually and in combination, by using 6-finger and 12-finger synthetic zinc finger protein artificial transcription factors (ATFs) in an epidermoid squamous cell carcinoma line, A431. We successfully designed 12-finger ATFs capable of coregulating ErbB3 and ICAM-1 or ErbB2 and ErbB3. With ATFs, the effects of changes in ErbB2 and ErbB3 receptor levels were evaluated by using cell proliferation, cell migration, and cell signaling assays. Cell proliferation was increased when ErbB2 and ErbB3 were both overexpressed. Cell migration on collagen was decreased when ErbB2 was down-regulated, yet migration on laminin was significantly increased with ErbB3 overexpression. ErbB2 and ErbB3 overexpression also stimulated the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Our ATF approach has elucidated differences in ErbB receptor-mediated proliferation, migration, and intracellular signaling that cannot be explained merely by the presence or absence of particular ErbB receptors and emphasizes the dynamic nature of the ErbB signaling system. The transcription factor approach developed here provides a gene-economical route to the regulation of multiple genes and may be important for complex gene therapies.
Collapse
Affiliation(s)
- Caren V Lund
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|