1
|
Pavlov RV, Akimov SA, Dashinimaev EB, Bashkirov PV. Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms. Int J Mol Sci 2024; 25:13540. [PMID: 39769303 PMCID: PMC11677079 DOI: 10.3390/ijms252413540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes. This review examines the critical role of membrane fusion in lipofection efficiency, with a particular focus on the molecular mechanisms that govern lipoplex-membrane interactions. This analysis will examine the key challenges inherent to the fusion process, from achieving initial membrane proximity to facilitating final content release through membrane remodeling. In contrast to viral vectors, which utilize specialized fusion proteins, lipid vectors necessitate a strategic formulation and environmental optimization to enhance their fusogenicity. This review discusses recent advances in vector design and fusion-promoting strategies, emphasizing their potential to improve gene delivery yield. It highlights the importance of understanding lipoplex-membrane fusion mechanisms for developing next-generation delivery systems and emphasizes the need for continued fundamental research to advance lipid-mediated transfection technology.
Collapse
Affiliation(s)
- Rais V. Pavlov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia;
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Pavel V. Bashkirov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| |
Collapse
|
2
|
Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes. MEMBRANES 2022; 12:membranes12050441. [PMID: 35629766 PMCID: PMC9142974 DOI: 10.3390/membranes12050441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a lipidic membrane derived from the host-cell membrane and acquired while exiting the host cell during the assembly and budding steps of their viral cycle. Thus, model membranes composed of selected lipid mixtures mimicking plasma membrane properties are the tools of choice and were used to decipher the first step in the assembly of enveloped viruses. Amongst these viruses, we choose to report the three most frequently studied viruses responsible for lethal human diseases, i.e., Human Immunodeficiency Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola Virus (EBOV), which assemble at the host-cell plasma membrane. Here, we review how model membranes such as Langmuir monolayers, bicelles, large and small unilamellar vesicles (LUVs and SUVs), supported lipid bilayers (SLBs), tethered-bilayer lipid membranes (tBLM) and giant unilamellar vesicles (GUVs) contribute to the understanding of viral assembly mechanisms and dynamics using biophysical approaches.
Collapse
|
3
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
4
|
Darweesh RS, Sakagami M. In vitro lung epithelial cell transport and anti-interleukin-8 releasing activity of liposomal ciprofloxacin. Eur J Pharm Sci 2018; 115:68-76. [PMID: 29337216 DOI: 10.1016/j.ejps.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/28/2017] [Accepted: 01/08/2018] [Indexed: 01/14/2023]
Abstract
As a promising long-acting inhaled formulation, liposomal ciprofloxacin (Lipo-CPFX) was characterized in the in vitro human lung epithelial Calu-3 cell monolayer system, compared to ciprofloxacin in solution (CPFX). Its modulated absorptive transport and uptake, and sustained inhibitory activity against induced pro-inflammatory interleukin-8 (IL-8) release were examined. The absorptive transport and uptake kinetics for Lipo-CPFX and CPFX were determined at 0.1-50 mg/ml in the Transwell system. The Lipo-CPFX transport was then challenged for mechanistic exploration via cell energy depletion, a reduced temperature, endocytosis and/or lipid fusion inhibition, and addition of excess non-loaded liposomes. The inhibitory activities of Lipo-CPFX and CPFX against lipopolysaccharide (LPS)-induced IL-8 release were assessed in a co-incubation or pre-incubation mode. In the tight Calu-3 cell monolayers, Lipo-CPFX yielded 15-times slower ciprofloxacin flux of absorptive transport and 5-times lower cellular drug uptake than CPFX. Its transport appeared to be transcellular; kinetically linear, proportional to encapsulated ciprofloxacin concentration; and consistent with the cell energy-independent lipid bilayer fusion mechanism. Lipo-CPFX was equipotent to CPFX in the anti-IL-8 releasing activity upon 24 h co-incubation with LPS. Additionally, Lipo-CPFX, but not CPFX, retained the anti-IL-8 releasing activity even 24 h after pre-incubation. In conclusion, Lipo-CPFX enabled slower absorptive lung epithelial cell transport and uptake of ciprofloxacin, apparently via the lipid bilayer fusion mechanism, and the sustained inhibitory activity against LPS-induced IL-8 release, compared to CPFX.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA.; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22,110, Jordan
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia, 23298, USA..
| |
Collapse
|
5
|
RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner. Biochem J 2017; 474:1205-1220. [PMID: 28202712 DOI: 10.1042/bcj20160886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.
Collapse
|
6
|
pH Alters PEG-mediated fusion of phosphatidylethanolamine-containing vesicles. Biophys J 2015; 107:1327-38. [PMID: 25229141 DOI: 10.1016/j.bpj.2014.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022] Open
Abstract
Here, we examine the different mechanisms of poly(ethylene glycol)-mediated fusion of small unilamellar vesicles composed of dioleoylphosphatidylcholine/dioleoylphosphatidylethanolamine (DOPE)/sphingomyelin/cholesterol in a molar ratio of 35:30:15:20 at pH 7.4 versus pH 5. In doing so, we test the hypothesis that fusion of this lipid mixture should be influenced by differences in hydration of DOPE at these two pH values. An examination of the literature reveals that DOPE should be less hydrated at pH 5 (where influenza virus particles fuse with endosome membranes) than at pH 7.4 (where synaptic vesicles or HIV virus particles fuse with plasma membrane). Ensemble kinetic experiments revealed substantial differences in fusion of this plasma membrane mimetic system at these two pH values. The most dramatic difference was the observation of two intermediates at pH 5 but loss of one of these fusion intermediates at pH 7.4. Analysis of data collected at several temperatures also revealed that formation of the initial fusion intermediate (stalk) was favored at pH 7.4 due to increased activation entropy. Our observations support the hypothesis that the different negative intrinsic curvature of DOPE can account for different fusion paths and activation thermodynamics in steps of the fusion process at these two pH values. Finally, the effects of 2 mol % hexadecane on fusion at both pH values seemed to have similar origins for step 1 (promotion of acyl chain or hydrocarbon excursion into interbilayer space) and step 3 (reduction of interstice energy leading to expansion to a critical stalk radius). Different hexadecane effects on activation thermodynamics at these two pH values can also be related to altered DOPE hydration. The results support our kinetic model for fusion and offer insight into the critical role of phosphatidylethanolamine in fusion.
Collapse
|
7
|
Hamilton BS, Whittaker GR, Daniel S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 2012; 4:1144-68. [PMID: 22852045 PMCID: PMC3407899 DOI: 10.3390/v4071144] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 12/15/2022] Open
Abstract
Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future.
Collapse
Affiliation(s)
- Brian S. Hamilton
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA;
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA;
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
8
|
Zhukovsky MA, Basmaciogullari S, Pacheco B, Wang L, Madani N, Haim H, Sodroski J. Thermal stability of the human immunodeficiency virus type 1 (HIV-1) receptors, CD4 and CXCR4, reconstituted in proteoliposomes. PLoS One 2010; 5:e13249. [PMID: 20967243 PMCID: PMC2954141 DOI: 10.1371/journal.pone.0013249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/13/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The entry of human immunodeficiency virus (HIV-1) into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4. METHODOLOGY/PRINCIPAL FINDINGS We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (E(a)) of 269 kJ/mol (64.3 kcal/mol) and an inactivation temperature (T(i)) of 56°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an E(a) of 278 kJ/mol (66.5 kcal/mol), and a T(i) of 52.2°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules. CONCLUSIONS/SIGNIFICANCE Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stéphane Basmaciogullari
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Pacheco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hillel Haim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
10
|
Ge M, Freed JH. Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study. Biophys J 2009; 96:4925-34. [PMID: 19527651 DOI: 10.1016/j.bpj.2009.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/27/2009] [Accepted: 04/06/2009] [Indexed: 11/29/2022] Open
Abstract
A spin-labeling study of interactions of a fusion peptide from the hemagglutinin of the influenza virus, wt20, and a fusion-inactive mutant DeltaG1 with dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-phosphatdylcholine bilayers was performed. We found that upon binding of wt20, the ordering of headgroups and the ordering of acyl chains near the headgroup increased significantly, in a manner consistent with a cooperative phenomenon. However, changes in the order at the end of the acyl chains were negligible. The ordering effect of wt20 on the headgroup was much stronger at pH 5 than at pH 7. No effect of DeltaG1 binding on the order of bilayers was evident. We also found that 1-palmitoyl-2-hydroxyl phosphatidylcholine, a membrane-fusion inhibitor, decreased the ordering of DMPC headgroups, whereas arachidonic acid, a membrane-fusion promoter, increased the ordering of DMPC headgroups. These results suggest that increases in headgroup ordering may be important for membrane fusion. We propose that upon binding of wt20, which is known to affect only the outer leaflet of the bilayer, this outer leaflet becomes more ordered, and thus more solid-like. Then the coupling between the hardened outer leaflet and the softer inner leaflet generates bending stresses in the bilayer, which tend to increase the negative curvature of the bilayer. We suggest that the increased ordering in the headgroup region enhances dipolar interactions and lowers electrostatic energy, which may provide an energy source for membrane fusion. Possible roles of bending stresses in promoting membrane fusion are discussed.
Collapse
Affiliation(s)
- Mingtao Ge
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 15853, USA
| | | |
Collapse
|
11
|
Zhukovsky MA, Markovic I, Bailey AL. Influence of calcium on lipid mixing mediated by influenza hemagglutinin. Arch Biochem Biophys 2007; 465:101-8. [PMID: 17585869 PMCID: PMC2025700 DOI: 10.1016/j.abb.2007.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/30/2007] [Accepted: 05/01/2007] [Indexed: 11/22/2022]
Abstract
We studied the influence of calcium on lipid mixing mediated by influenza hemagglutinin (HA). Lipid mixing between HA-expressing cells and liposomes containing disialoganglioside, influenza virus receptor, was studied at 37 degrees C and neutral pH after a low-pH pulse at 4 degrees C. With DSPC/cholesterol liposomes, calcium present after raising the temperature significantly promoted lipid mixing only when it was triggered by a short low-pH application. In case of DOPC/cholesterol liposomes, calcium promotion was observed regardless of the duration of the low-pH pulse. Calcium present during a short, but not long, low-pH application to HA-expressing cells with bound DSPC/cholesterol liposomes at 4 degrees C inhibited subsequent lipid mixing. We hypothesize that calcium influences lipid mixing because it binds to a vestigial esterase domain of hemagglutinin or causes expulsion of the fusion peptide from an electronegative cavity. We suggest that calcium promotes the transition from early and reversible conformation(s) of low pH-activated HA towards an irreversible conformation that underlies both HA-mediated lipid mixing and HA inactivation.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
12
|
Wessels L, Elting MW, Scimeca D, Weninger K. Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 2007; 93:526-38. [PMID: 17449662 PMCID: PMC1896232 DOI: 10.1529/biophysj.106.097485] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many enveloped viruses employ low-pH-triggered membrane fusion during cell penetration. Solution-based in vitro assays in which viruses fuse with liposomes have provided much of our current biochemical understanding of low-pH-triggered viral membrane fusion. Here, we extend this in vitro approach by introducing a fluorescence assay using single particle tracking to observe lipid mixing between individual virus particles (influenza or Sindbis) and supported lipid bilayers. Our single-particle experiments reproduce many of the observations of the solution assays. The single-particle approach naturally separates the processes of membrane binding and membrane fusion and therefore allows measurement of details that are not available in the bulk assays. We find that the dynamics of lipid mixing during individual Sindbis fusion events is faster than 30 ms. Although neither virus binds membranes at neutral pH, under acidic conditions, the delay between membrane binding and lipid mixing is less than half a second for nearly all virus-membrane combinations. The delay between binding and lipid mixing lengthened only for Sindbis virus at the lowest pH in a cholesterol-dependent manner, highlighting the complex interaction between lipids, virus proteins, and buffer conditions in membrane fusion.
Collapse
Affiliation(s)
- Laura Wessels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
13
|
Pankov R, Markovska T, Antonov P, Ivanova L, Momchilova A. The plasma membrane lipid composition affects fusion between cells and model membranes. Chem Biol Interact 2006; 164:167-73. [PMID: 17098217 DOI: 10.1016/j.cbi.2006.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/20/2006] [Accepted: 09/26/2006] [Indexed: 10/23/2022]
Abstract
Investigations were carried out on the effect of plasma membrane lipid modifications on the fusogenic capacity of control and ras-transformed fibroblasts. The plasma membrane lipid composition was modified by treatment of cells with exogenous phospholipases C and D, sphingomyelinase and cyclodextrin. The used enzymes hydrolyzed definite membrane lipids thus inducing specific modifications of the lipid composition while cyclodextrin treatment reduced significantly the level of cholesterol. The cells with modified membranes were used for assessment of their fusogenic capacity with model membranes with a constant lipid composition. Treatment with phospholipases C and D stimulated the fusogenic potential of both cell lines whereas the specific reduction of either sphingomyelin or cholesterol induced the opposite effect. The results showed that all modifications of the plasma membrane lipid composition affected the fusogenic capacity irrespective of the initial differences in the membrane lipid composition of the two cell lines. These results support the notion that the lipid composition plays a significant role in the processes of membrane-membrane fusion. This role could be either direct or through modulation of the activity of specific proteins which regulate membrane fusion.
Collapse
Affiliation(s)
- Roumen Pankov
- Department of Cytology, Histology and Embryology, Biological Faculty, Sofia University, Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
14
|
Ohki S, Baker GA, Page PM, McCarty TA, Epand RM, Bright FV. Interaction of influenza virus fusion peptide with lipid membranes: effect of lysolipid. J Membr Biol 2006; 211:191-200. [PMID: 17091213 DOI: 10.1007/s00232-006-0862-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/12/2006] [Indexed: 11/29/2022]
Abstract
The effect of lysophosphatidylcholine (LPC) on lipid vesicle fusion and leakage induced by influenza virus fusion peptides and the peptide interaction with lipid membranes were studied by using fluorescence spectroscopy and monolayer surface tension measurements. It was confirmed that the wild-type fusion peptide-induced vesicle fusion rate increased several-fold between pH 7 and 5, unlike a mutated peptide, in which valine residues were substituted for glutamic acid residues at positions 11 and 15. This mutated peptide exhibited a much greater ability to induce lipid vesicle fusion and leakage but in a less pH-dependent manner compared to the wild-type fusion peptide. The peptide-induced vesicle fusion and leakage were well correlated with the degree of interaction of these peptides with lipid membranes, as deduced from the rotational correlation time obtained for the peptide tryptophan fluorescence. Both vesicle fusion and leakage induced by the peptides were suppressed by LPC incorporated into lipid vesicle membranes in a concentration-dependent manner. The rotational correlation time associated with the peptide's tryptophan residue, which interacts with lipid membranes containing up to 25 mole % LPC, was virtually the same compared to lipid membranes without LPC, indicating that LPC-incorporated membrane did not affect the peptide interaction with the membrane. The adsorption of peptide onto a lipid monolayer also showed that the presence of LPC did not affect peptide adsorption.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology & Biophysics, School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Zhukovsky MA, Leikina E, Markovic I, Bailey AL, Chernomordik LV. Heterogeneity of early intermediates in cell-liposome fusion mediated by influenza hemagglutinin. Biophys J 2006; 91:3349-58. [PMID: 16905609 PMCID: PMC1614502 DOI: 10.1529/biophysj.106.088005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To explore early intermediates in membrane fusion mediated by influenza virus hemagglutinin (HA) and their dependence on the composition of the target membrane, we studied lipid mixing between HA-expressing cells and liposomes containing phosphatidylcholine (PC) with different hydrocarbon chains. For all tested compositions, our results indicate the existence of at least two types of intermediates, which differ in their lifetimes. The composition of the target membrane affects the stability of fusion intermediates at a stage before lipid mixing. For less fusogenic distearoyl PC-containing liposomes at 4 degrees C, some of the intermediates inactivate, and no intermediates advance to lipid mixing. Fusion intermediates that formed for the more fusogenic dioleoyl PC-containing liposomes did not inactivate and even yielded partial lipid mixing at 4 degrees C. Thus, a more fusogenic target membrane effectively blocks nonproductive release of the conformational energy of HA. Even for the same liposome composition, HA forms two types of fusion intermediates, dissimilar in their stability and propensity to fuse. This diversity of fusion intermediates emphasizes the importance of local membrane composition and local protein concentration in fusion of heterogeneous biological membranes.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Laboratory of Cellular and Molecular Biophysics, Section on Membrane Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|