1
|
Denisov IG, Sligar SG. Nanodiscs for the study of membrane proteins. Curr Opin Struct Biol 2024; 87:102844. [PMID: 38795563 PMCID: PMC11283964 DOI: 10.1016/j.sbi.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Nanodiscs represent a versatile tool for studies of membrane proteins and protein-membrane interactions under native-like conditions. Multiple variations of the Nanodisc platform, as well as new experimental methods, have been recently developed to understand various aspects of structure, dynamics and functional properties of systems involved in signaling, transport, blood coagulation and many other critically important processes. In this mini-review, we focus on some of these exciting recent developments that utilize the Nanodisc platform.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Brough Z, Zhao Z, Duong van Hoa F. From bottom-up to cell surface proteomics: detergents or no detergents, that is the question. Biochem Soc Trans 2024; 52:1253-1263. [PMID: 38666604 PMCID: PMC11346462 DOI: 10.1042/bst20231020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 06/27/2024]
Abstract
Measuring the expression levels of membrane proteins (MPs) is crucial for understanding cell differentiation and tissue specificity, defining disease characteristics, identifying biomarkers, and developing therapeutics. While bottom-up proteomics addresses the need for accurately surveying the membrane proteome, the lower abundance and hydrophobic nature of MPs pose challenges in sample preparation. As MPs normally reside in the lipid bilayer, conventional extraction methods rely on detergents, introducing here a paradox - detergents prevent aggregation and facilitate protein processing, but themselves become contaminants that interfere with downstream analytical applications. Various detergent removal methods exist to mitigate this issue, including filter-aided sample preparation, SP3, suspension trapping, and membrane mimetics. This review delves into the fundamentals of each strategy, applications, merits, and limitations, providing insights into their effectiveness in MP research.
Collapse
Affiliation(s)
- Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
3
|
Babot M, Boulard Y, Agouda S, Pieri L, Fieulaine S, Bressanelli S, Gervais V. Oligomeric assembly of the C-terminal and transmembrane region of SARS-CoV-2 nsp3. J Virol 2024; 98:e0157523. [PMID: 38483167 PMCID: PMC11019948 DOI: 10.1128/jvi.01575-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/22/2024] [Indexed: 04/17/2024] Open
Abstract
As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.
Collapse
Affiliation(s)
- Marion Babot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Samira Agouda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Pieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
4
|
Caron NS, Aly AEE, Findlay Black H, Martin DDO, Schmidt ME, Ko S, Anderson C, Harvey EM, Casal LL, Anderson LM, Rahavi SMR, Reid GSD, Oda MN, Stanimirovic D, Abulrob A, McBride JL, Leavitt BR, Hayden MR. Systemic delivery of mutant huntingtin lowering antisense oligonucleotides to the brain using apolipoprotein A-I nanodisks for Huntington disease. J Control Release 2024; 367:27-44. [PMID: 38215984 DOI: 10.1016/j.jconrel.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Emily M Harvey
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seyed M R Rahavi
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor S D Reid
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Leighton RE, Frontiera RR. Quantifying Bacteriorhodopsin Activity as a Function of its Local Environment with a Raman-Based Assay. J Phys Chem B 2023; 127:8833-8841. [PMID: 37812499 DOI: 10.1021/acs.jpcb.3c04802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Bacteriorhodopsin (bR) is a transmembrane protein that functions as a light-driven proton pump in halophilic archaea. The bR photocycle has been well-characterized; however, these measurements almost exclusively measured purified bR, outside of its native membrane. To investigate what effect the cellular environment has on the bR photocycle, we have developed a Raman-based assay that can monitor the activity of the bR in a variety of conditions, including in its native membrane. The assay uses two continuous-wave lasers, one to initiate photochemistry and one to monitor bR activity. The excitation leads to the steady-state depletion of ground-state bR, which directly relates to the population of photocycle intermediate states. We have used this assay to monitor bR activity both in vitro and in vivo. Our in vitro measurements confirm that our assay is sensitive to bulk environmental changes reported in the literature. Our in vivo measurements show a decrease in bR activity with increasing extracellular pH for bR in its native membrane. The difference in activity with increasing pH indicates that the native membrane environment affects the function of bR. This assay opens the door to future measurements into understanding how the local environment of this transmembrane protein affects function.
Collapse
Affiliation(s)
- Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Scherhag A, Räschle M, Unbehend N, Venn B, Glueck D, Mühlhaus T, Keller S, Pérez Patallo E, Zehner S, Frankenberg-Dinkel N. Characterization of a soluble library of the Pseudomonas aeruginosa PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes. MICROLIFE 2023; 4:uqad028. [PMID: 37441524 PMCID: PMC10335732 DOI: 10.1093/femsml/uqad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.
Collapse
Affiliation(s)
- Anna Scherhag
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Markus Räschle
- Department of Molecular Genetics, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Niklas Unbehend
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Benedikt Venn
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - David Glueck
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Timo Mühlhaus
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Sandro Keller
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Eugenio Pérez Patallo
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | | | - Nicole Frankenberg-Dinkel
- Corresponding author. RPTU Kaiserslautern-Landau, Microbiology, Kaiserslautern 67655, Germany. E-mail:
| |
Collapse
|
7
|
Role of Monomer/Tetramer Equilibrium of Rod Visual Arrestin in the Interaction with Phosphorylated Rhodopsin. Int J Mol Sci 2023; 24:ijms24054963. [PMID: 36902393 PMCID: PMC10003454 DOI: 10.3390/ijms24054963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The phototransduction cascade in vertebrate rod visual cells is initiated by the photoactivation of rhodopsin, which enables the activation of the visual G protein transducin. It is terminated by the phosphorylation of rhodopsin, followed by the binding of arrestin. Here we measured the solution X-ray scattering of nanodiscs containing rhodopsin in the presence of rod arrestin to directly observe the formation of the rhodopsin/arrestin complex. Although arrestin self-associates to form a tetramer at physiological concentrations, it was found that arrestin binds to phosphorylated and photoactivated rhodopsin at 1:1 stoichiometry. In contrast, no complex formation was observed for unphosphorylated rhodopsin upon photoactivation, even at physiological arrestin concentrations, suggesting that the constitutive activity of rod arrestin is sufficiently low. UV-visible spectroscopy demonstrated that the rate of the formation of the rhodopsin/arrestin complex well correlates with the concentration of arrestin monomer rather than the tetramer. These findings indicate that arrestin monomer, whose concentration is almost constant due to the equilibrium with the tetramer, binds to phosphorylated rhodopsin. The arrestin tetramer would act as a reservoir of monomer to compensate for the large changes in arrestin concentration in rod cells caused by intense light or adaptation.
Collapse
|
8
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Jin F, Huang Y, Hattori M. Recent Advances in the Structural Biology of Mg 2+ Channels and Transporters. J Mol Biol 2022; 434:167729. [PMID: 35841930 DOI: 10.1016/j.jmb.2022.167729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Magnesium ions (Mg2+) are the most abundant divalent cations in living organisms and are essential for various physiological processes, including ATP utilization and the catalytic activity of numerous enzymes. Therefore, the homeostatic mechanisms associated with cellular Mg2+ are crucial for both eukaryotic and prokaryotic organisms and are thus strictly controlled by Mg2+ channels and transporters. Technological advances in structural biology, such as the expression screening of membrane proteins, in meso phase crystallization, and recent cryo-EM techniques, have enabled the structure determination of numerous Mg2+ channels and transporters. In this review article, we provide an overview of the families of Mg2+ channels and transporters (MgtE/SLC41, TRPM6/7, CorA/Mrs2, CorC/CNNM), and discuss the structural biology prospects based on the known structures of MgtE, TRPM7, CorA and CorC.
Collapse
Affiliation(s)
- Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yichen Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Structural and functional evaluation mammalian and plant lipoxygenases upon association with nanodics as membrane mimetics. Biophys Chem 2022; 288:106855. [PMID: 35849958 DOI: 10.1016/j.bpc.2022.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Lipoxygenases (LOX) are a family lipid oxygenating enzymes that can generate bioactive lipids of clinical relevance from polyunsaturated fatty acids. Most LOXs display a Ca2+-dependent association with membranes for their activity. Nanodiscs (ND) are stable self-assembled discoidal fragments of lipid bilayers that can mimic the plasma membrane. In this study, we evaluated the association of mammalian 15-LOXs (ALOX15 and ALOX15B) and soybean LOX-1 with NDs (LOX-ND), their enzymatic activities and inhibition. Mammalian LOXs associated with NDs showed better retention of enzymatic function compared to soybean LOX-1. Treatment of both LOX-NDs and free enzymes with the pan-LOX inhibitor nordihydroguaiaretic acid (NDGA) showed an approximately 5-fold more effective inhibition of the enzymes associated with NDs compared to the free form. NDs are easy to generate membrane mimics that can be used as an effective tool to determine enzymatic function and inhibition of membrane associated proteins.
Collapse
|
11
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
12
|
Josts I, Kehlenbeck DM, Nitsche J, Tidow H. Studying integral membrane protein by SANS using stealth reconstitution systems. Methods Enzymol 2022; 677:417-432. [DOI: 10.1016/bs.mie.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Farrelly MD, Martin LL, Thang SH. Polymer Nanodiscs and Their Bioanalytical Potential. Chemistry 2021; 27:12922-12939. [PMID: 34180107 DOI: 10.1002/chem.202101572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins (MPs) play a pivotal role in cellular function and are therefore predominant pharmaceutical targets. Although detailed understanding of MP structure and mechanistic activity is invaluable for rational drug design, challenges are associated with the purification and study of MPs. This review delves into the historical developments that became the prelude to currently available membrane mimetic technologies before shining a spotlight on polymer nanodiscs. These are soluble nanosized particles capable of encompassing MPs embedded in a phospholipid ring. The expanding range of reported amphipathic polymer nanodisc materials is presented and discussed in terms of their tolerance to different solution conditions and their nanodisc properties. Finally, the analytical scope of polymer nanodiscs is considered in both the demonstration of basic nanodisc parameters as well as in the elucidation of structures, lipid-protein interactions, and the functional mechanisms of reconstituted membrane proteins. The final emphasis is given to the unique benefits and applications demonstrated for native nanodiscs accessed through a detergent free process.
Collapse
Affiliation(s)
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| |
Collapse
|
14
|
Oh H, Jung Y, Moon S, Hwang J, Ban C, Chung J, Chung WJ, Kweon DH. Development of End-Spliced Dimeric Nanodiscs for the Improved Virucidal Activity of a Nanoperforator. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36757-36768. [PMID: 34319090 DOI: 10.1021/acsami.1c06364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid-bilayer nanodiscs (NDs) wrapped in membrane scaffold proteins (MSPs) have primarily been used to study membrane proteins of interest in a physiological environment. Recently, NDs have been employed in broader applications including drug delivery, cancer immunotherapy, bio-imaging, and therapeutic virucides. Here, we developed a method to synthesize a dimeric nanodisc, whose MSPs are circularly end-spliced, with long-term thermal stability and resistance to aggregation. The end-spliced nanodiscs (esNDs) were assembled using MSPs that were self-circularized inside the cytoplasm ofEscherichia colivia highly efficient protein trans-splicing. The esNDs demonstrated a consistent size and 4-5-fold higher stability against heat and aggregation than conventional NDs. Moreover, cysteine residues on trans-spliced circularized MSPs allowed us to modulate the formation of either monomeric nanodiscs (essNDs) or dimeric nanodiscs (esdNDs) by controlling the oxidation/reduction conditions and lipid-to-protein ratios. When the esdNDs were used to prepare an antiviral nanoperforator that induced the disruption of the viral membrane upon contact, antiviral activity was dramatically increased, suggesting that the dimerization of nanodiscs led to cooperativity between linked nanodiscs. We expect that controllable structures, long-term stability, and aggregation resistance of esNDs will aid the development of novel versatile membrane-mimetic nanomaterials with flexible designs and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Hyunseok Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Younghun Jung
- Institute of Biomolecular Control, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choongjin Ban
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Jinhyo Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Esmaili M, Eldeeb MA, Moosavi-Movahedi AA. Current Developments in Native Nanometric Discoidal Membrane Bilayer Formed by Amphipathic Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1771. [PMID: 34361157 PMCID: PMC8308186 DOI: 10.3390/nano11071771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Unlike cytosolic proteins, membrane proteins (MPs) are embedded within the plasma membrane and the lipid bilayer of intracellular organelles. MPs serve in various cellular processes and account for over 65% of the current drug targets. The development of membrane mimetic systems such as bicelles, short synthetic polymers or amphipols, and membrane scaffold proteins (MSP)-based nanodiscs has facilitated the accommodation of synthetic lipids to stabilize MPs, yet the preparation of these membrane mimetics remains detergent-dependent. Bio-inspired synthetic polymers present an invaluable tool for excision and liberation of superstructures of MPs and their surrounding annular lipid bilayer in the nanometric discoidal assemblies. In this article, we discuss the significance of self-assembling process in design of biomimetic systems, review development of multiple series of amphipathic polymers and the significance of these polymeric "belts" in biomedical research in particular in unraveling the structures, dynamics and functions of several high-value membrane protein targets.
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mohamed A. Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | | |
Collapse
|
16
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Shelby M, Gilbile D, Grant T, Bauer W, Segelke B, He W, Evans A, Crespo N, Fischer P, Pakendorf T, Hennicke V, Hunter M, Batyuk A, Barthelmess M, Meents A, Kuhl T, Frank M, Coleman M. Crystallization of ApoA1 and ApoE4 nanolipoprotein particles and initial XFEL-based structural studies. CRYSTALS 2020; 10. [PMID: 35686136 PMCID: PMC9175823 DOI: 10.3390/cryst10100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanolipoprotein particles (NLPs), also called “nanodiscs”, are discoidal particles with a patch of lipid bilayer corralled by apolipoproteins. NLPs have long been of interest due to both their utility as membrane-model systems into which membrane proteins can be inserted and solubilized and their physiological role in lipid and cholesterol transport via HDL and LDL maturation, which are important for human health. Serial femtosecond crystallography (SFX) at X-ray free electron lasers (XFELs) is a powerful approach for structural biology of membrane proteins, which are traditionally difficult to crystallize as large single crystals capable of producing high-quality diffraction suitable for structure determination. To facilitate understanding of the specific role of two apolipoprotein/lipid complexes, ApoA1 and ApoE4, in lipid binding and HDL/LDL particle maturation dynamics and develop new SFX methods involving NLP membrane protein encapsulation, we have prepared and crystallized homogeneous populations of ApoA1 and ApoE4 NLPs. Crystallization of empty NLPs yields semi-ordered objects that appear crystalline and give highly anisotropic and diffuse X-ray diffraction, similar in characteristics to fiber diffraction. Several unit cell parameters were approximately determined for both NLPs from these measurements. Thus, low-background, sample conservative methods of delivery are critical. Here we implemented a fixed target sample delivery scheme utilizing the Roadrunner fast-scanning system and ultra-thin polymer/graphene support films, providing a low-volume, low-background approach to membrane protein SFX. This study represents initial steps in obtaining structural information for ApoA1 and ApoE4 NLPs and developing this system as a supporting scaffold for future structural studies of membrane proteins crystalized in a native lipid environment.
Collapse
Affiliation(s)
- M.L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - D. Gilbile
- Department of Chemical Engineering, University of California at Davis, Davis, CA, USA
| | - T.D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, NY, USA
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - W.J. Bauer
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - B. Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - W. He
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - A.C. Evans
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Chemical Engineering, University of California at Davis, Davis, CA, USA
| | - N. Crespo
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, NY, USA
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - P. Fischer
- Center for Free-Electron Laser Science, Hamburg, Germany
| | - T. Pakendorf
- Center for Free-Electron Laser Science, Hamburg, Germany
| | - V. Hennicke
- Center for Free-Electron Laser Science, Hamburg, Germany
| | - M.S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - A. Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - M. Barthelmess
- Center for Free-Electron Laser Science, Hamburg, Germany
| | - A. Meents
- Center for Free-Electron Laser Science, Hamburg, Germany
| | - T.L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, CA, USA
| | - M. Frank
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Chemical Engineering, University of California at Davis, Davis, CA, USA
- Correspondence: ; Tel: +1-925-423-7687 or ; Tel: 1-925-423-5068
| | - M.A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Chemical Engineering, University of California at Davis, Davis, CA, USA
- Correspondence: ; Tel: +1-925-423-7687 or ; Tel: 1-925-423-5068
| |
Collapse
|
18
|
Ueta T, Kojima K, Hino T, Shibata M, Nagano S, Sudo Y. Applicability of Styrene-Maleic Acid Copolymer for Two Microbial Rhodopsins, RxR and HsSRI. Biophys J 2020; 119:1760-1770. [PMID: 33086044 DOI: 10.1016/j.bpj.2020.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The membrane-embedded protein rhodopsin is widely produced in organisms as a photoreceptor showing a variety of light-dependent biological functions. To investigate its molecular features, rhodopsin is often extracted from cellular membrane lipids by a suitable detergent as "micelles." The extracted protein is purified by column chromatography and then is often reconstituted into "liposomes" by removal of the detergent. The styrene-maleic acid ("SMA") copolymer spontaneously forms nanostructures containing lipids without detergent. In this study, we applied SMA to characterize two microbial rhodopsins, a thermally stable rhodopsin, Rubrobacter xylanophilus rhodopsin (RxR), and an unstable one, Halobacterium salinarum sensory rhodopsin I (HsSRI), and evaluated their physicochemical properties in SMA lipid particles compared with rhodopsins in micelles and in liposomes. Those two rhodopsins were produced in Escherichia coli cells and were successfully extracted from the membrane by the addition of SMA (5 w/v %) without losing their visible color. Analysis by dynamic light scattering revealed that RxR in SMA lipid particles (RxR-SMA) formed a discoidal structure with a diameter of 54 nm, which was 10 times smaller than RxR in phosphatidylcholine liposomes. The small particle size of RxR-SMA allowed us to obtain scattering-less visible spectra with a high signal-to-noise ratio similar to RxR in detergent micelles composed of n-dodecyl-β-D-maltoside. High-speed atomic force microscopy revealed that a single particle contained an average of 4.1 trimers of RxR (12.3 monomers). In addition, RxR-SMA showed a fast cyclic photoreaction (k = 13 s-1) comparable with RxR in phosphatidylcholine liposomes (17 s-1) but not to RxR in detergent micelles composed of n-dodecyl-β-D-maltoside (0.59 s-1). By taking advantage of SMA, we determined the dissociation constant (Kd) of chloride for HsSRI as 34 mM. From these results, we conclude that SMA is a useful molecule forming a membrane-mimicking assembly for microbial rhodopsins having the advantages of detergents and liposomes.
Collapse
Affiliation(s)
- Tetsuya Ueta
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Keiichi Kojima
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Mikihiro Shibata
- Nano Life Science Institute (WPI-NanoLSI), and High-Speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Yuki Sudo
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan.
| |
Collapse
|
19
|
Dufourc EJ. Bicelles and nanodiscs for biophysical chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183478. [PMID: 32971065 DOI: 10.1016/j.bbamem.2020.183478] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/14/2023]
Abstract
Membrane nanoobjects are very important tools to study biomembrane properties. Two types are described herein: Bicelles and Nanodiscs. Bicelles are obtained by thorough water mixing of long chain and short chain lipids and may take the form of membranous discs of 10-50 nm. Temperature-composition-hydration diagrams have been established for Phosphatidylcholines and show limited domains of existence. Bicelles can be doped with charged lipids, surfactants or with cholesterol and offer a wide variety of membranous platforms for structural biology. Internal dynamics as measured by solid-state NMR is very similar to that of liposomes in their fluid phase. Because of the magnetic susceptibility anisotropy of the lipid chains, discs may be aligned along or perpendicular to the magnetic field. They may serve as weak orienting media to provide distance information in determining the 3D structure of soluble proteins. In different conditions they show strong orienting properties which may be used to study the 3D structure, topology and dynamics of membrane proteins. Lipid Bicelles with biphenyl chains or doped with lanthanides show long lasting remnant orientation after removing the magnetic field due to smectic-like properties. An alternative to pure lipid Bicelles is provided by nanodiscs where the half torus composed by short chain lipids is replaced by proteins. This renders the nano-objects less fragile as they can be used to stabilize membrane protein assemblies to be studied by electron microscopy. Internal dynamics is again similar to liposomes except that the phase transition is abolished, possibly due to lateral constrain imposed by the toroidal proteins limiting the disc size. Advantages and drawbacks of both nanoplatforms are discussed.
Collapse
Affiliation(s)
- Erick J Dufourc
- Institute of Chemistry and Biology of membranes and Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Allée Geoffroy Saint Hilaire, 33600 Pessac, France.
| |
Collapse
|
20
|
Yamamoto A, Tsukamoto T, Suzuki K, Hashimoto E, Kobashigawa Y, Shibasaki K, Uchida T, Inagaki F, Demura M, Ishimori K. Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids. Biophys J 2020; 118:2853-2865. [PMID: 32396848 DOI: 10.1016/j.bpj.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022] Open
Abstract
We successfully reconstituted single Natronomonas pharaonis halorhodopsin (NpHR) trimers into a nanodisk (ND) using the native archaeal lipid (NL) and an artificial lipid having a zwitterionic headgroup, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Incorporation of single trimeric NpHR into NDs was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, and visible circular dichroism spectroscopy. The Cl- binding affinity of NpHR in NDs using NL (NL-ND NpHR) or POPC (POPC-ND NpHR) was examined by absorption spectroscopy, showing that the Cl--releasing affinities (Kd,N↔O) of these ND-reconstituted NpHRs are more than 10 times higher than that obtained from native NpHR membrane fragments (MFs) harvested from a NpHR-overexpressing archaeal strain (MF NpHR). The photoreaction kinetics of these ND-reconstituted NpHRs revealed that the Cl- uptake was faster than that of MF NpHR. These differences in the Cl--releasing and uptake properties of ND-reconstituted NpHRs and MF NpHR may arise from suppression of protein conformational changes associated with Cl- release from the trimeric NpHR caused by ND reconstitution, conformational perturbation in the trimeric state, and loss of the trimer-trimer interactions. On the other hand, POPC-ND NpHR demonstrated accelerated Cl- uptake compared to NL-ND NpHR, suggesting that the negative charge on the archaeal membrane surface regulates the photocycle of NpHR. Although NL-ND NpHR and MF NpHR are embedded in the same lipid, the lower Cl--binding affinity at the initial state (Kd,initial) and faster recovering from the NpHR' state to the original state of the photoreaction cycle were observed for NL-ND NpHR, probably because of insufficient interactions with a chromophore in the native membrane, bacterioruberin in reconstituted NDs. Our results indicate that specific interactions of NpHR with surrounding lipids and bacterioruberin, structural flexibility of the membrane, and interactions between trimeric NpHRs may be necessary for efficient Cl- pumping.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Kenshiro Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Eri Hashimoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | | | - Kousuke Shibasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Fuyuhiko Inagaki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
21
|
Häusler E, Fredriksson K, Goba I, Peters C, Raltchev K, Sperl L, Steiner A, Weinkauf S, Hagn F. Quantifying the insertion of membrane proteins into lipid bilayer nanodiscs using a fusion protein strategy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183190. [DOI: 10.1016/j.bbamem.2020.183190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
|
22
|
Abstract
The interactions between lipids and proteins are one of the most fundamental processes in living organisms, responsible for critical cellular events ranging from replication, cell division, signaling, and movement. Enabling the central coupling responsible for maintaining the functionality of the breadth of proteins, receptors, and enzymes that find their natural home in biological membranes, the fundamental mechanisms of recognition of protein for lipid, and vice versa, have been a focal point of biochemical and biophysical investigations for many decades. Complexes of lipids and proteins, such as the various lipoprotein factions, play central roles in the trafficking of important proteins, small molecules and metabolites and are often implicated in disease states. Recently an engineered lipoprotein particle, termed the nanodisc, a modified form of the human high density lipoprotein fraction, has served as a membrane mimetic for the investigation of membrane proteins and studies of lipid-protein interactions. In this review, we summarize the current knowledge regarding this self-assembling lipid-protein complex and provide examples for its utility in the investigation of a large number of biological systems.
Collapse
|
23
|
Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, de Groot HJ, Kennis JT, de Grip WJ. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183113. [DOI: 10.1016/j.bbamem.2019.183113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
|
24
|
Carlson ML, Stacey RG, Young JW, Wason IS, Zhao Z, Rattray DG, Scott N, Kerr CH, Babu M, Foster LJ, Duong Van Hoa F. Profiling the Escherichia coli membrane protein interactome captured in Peptidisc libraries. eLife 2019; 8:46615. [PMID: 31364989 PMCID: PMC6697469 DOI: 10.7554/elife.46615] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Protein-correlation-profiling (PCP), in combination with quantitative proteomics, has emerged as a high-throughput method for the rapid identification of dynamic protein complexes in native conditions. While PCP has been successfully applied to soluble proteomes, characterization of the membrane interactome has lagged, partly due to the necessary use of detergents to maintain protein solubility. Here, we apply the peptidisc, a ‘one-size fits all’ membrane mimetic, for the capture of the Escherichia coli cell envelope proteome and its high-resolution fractionation in the absence of detergent. Analysis of the SILAC-labeled peptidisc library via PCP allows generation of over 4900 possible binary interactions out of >700,000 random associations. Using well-characterized membrane protein systems such as the SecY translocon, the Bam complex and the MetNI transporter, we demonstrate that our dataset is a useful resource for identifying transient and surprisingly novel protein interactions. For example, we discover a trans-periplasmic supercomplex comprising subunits of the Bam and Sec machineries, including membrane-bound chaperones YfgM and PpiD. We identify RcsF and OmpA as bone fide interactors of BamA, and we show that MetQ association with the ABC transporter MetNI depends on its N-terminal lipid anchor. We also discover NlpA as a novel interactor of MetNI complex. Most of these interactions are largely undetected by standard detergent-based purification. Together, the peptidisc workflow applied to the proteomic field is emerging as a promising novel approach to characterize membrane protein interactions under native expression conditions and without genetic manipulation.
Collapse
Affiliation(s)
- Michael Luke Carlson
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - R Greg Stacey
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - John William Young
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Irvinder Singh Wason
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Zhiyu Zhao
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - David G Rattray
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nichollas Scott
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Craig H Kerr
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mohan Babu
- Department of Biochemistry, Faculty of Science, University of Regina, Regina, Canada
| | - Leonard J Foster
- Michael Smith Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Franck Duong Van Hoa
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Shelby ML, He W, Dang AT, Kuhl TL, Coleman MA. Cell-Free Co-Translational Approaches for Producing Mammalian Receptors: Expanding the Cell-Free Expression Toolbox Using Nanolipoproteins. Front Pharmacol 2019; 10:744. [PMID: 31333463 PMCID: PMC6616253 DOI: 10.3389/fphar.2019.00744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
Membranes proteins make up more than 60% of current drug targets and account for approximately 30% or more of the cellular proteome. Access to this important class of proteins has been difficult due to their inherent insolubility and tendency to aggregate in aqueous solutions. Understanding membrane protein structure and function demands novel means of membrane protein production that preserve both their native conformational state as well as function. Over the last decade, cell-free expression systems have emerged as an important complement to cell-based expression of membrane proteins due to their simple and customizable experimental parameters. One approach to overcome the solubility and stability limitations of purified membrane proteins is to support them in stable, native-like states within nanolipoprotein particles (NLPs), aka nanodiscs. This has become common practice to facilitate biochemical and biophysical characterization of proteins of interest. NLP technology can be easily coupled with cell-free systems to achieve functional membrane protein production for this purpose. Our approach involves utilizing cell-free expression systems in the presence of NLPs or using co-translation techniques to perform one-pot expression and self-assembly of membrane protein/NLP complexes. We describe how cell-free reactions can be modified to render control over nanoparticle size and monodispersity in support of membrane protein production. These modifications have been exploited to facilitate co-expression of full-length functional membrane proteins such as G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In particular, we summarize the state of the art in NLP-assisted cell-free coexpression of these important classes of membrane proteins as well as evaluate the advances in and prospects for this technology that will drive drug discovery against these targets. We conclude with a prospective on the use of NLPs to produce as well as deliver functional mammalian membrane-bound proteins for a range of applications.
Collapse
Affiliation(s)
- Megan L Shelby
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amanda T Dang
- University of California at Davis, Davis, CA, United States
| | - Tonya L Kuhl
- University of California at Davis, Davis, CA, United States
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States.,University of California at Davis, Davis, CA, United States
| |
Collapse
|
26
|
Yokogawa M, Fukuda M, Osawa M. Nanodiscs for Structural Biology in a Membranous Environment. Chem Pharm Bull (Tokyo) 2019; 67:321-326. [PMID: 30930435 DOI: 10.1248/cpb.c18-00941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structures of many membrane proteins have been analyzed in detergent micelles. However, the environment of detergent micelles differs somewhat from that of the lipid bilayer, where membrane proteins exhibit physiological functions. Therefore, a more membrane-like environment has been awaited for structural analysis of membrane proteins. Nanodiscs are "hockey-puck"-shaped lipid bilayer particles that distribute in a monodispersed manner in aqueous solution. We review how nanodiscs or protein-reconstituted nanodiscs are prepared and how they are utilized to analyze protein structure, dynamics, and interactions with lipid molecules using solution NMR and cryo-electron microscopy.
Collapse
Affiliation(s)
- Mariko Yokogawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy
| | - Masahiro Fukuda
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy
| | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy
| |
Collapse
|
27
|
Minimal nanodisc without exogenous lipids for stabilizing membrane proteins in detergent-free buffer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:852-860. [DOI: 10.1016/j.bbamem.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 01/29/2023]
|
28
|
Kao YM, Cheng CH, Syue ML, Huang HY, Chen IC, Yu TY, Chu LK. Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds. J Phys Chem B 2019; 123:2032-2039. [DOI: 10.1021/acs.jpcb.9b01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Min Kao
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chung-Hao Cheng
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ming-Lun Syue
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsin-Yu Huang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - I-Chia Chen
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
29
|
Skar-Gislinge N, Johansen NT, Høiberg-Nielsen R, Arleth L. Comprehensive Study of the Self-Assembly of Phospholipid Nanodiscs: What Determines Their Shape and Stoichiometry? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12569-12582. [PMID: 30239200 DOI: 10.1021/acs.langmuir.8b01503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phospholipid nanodiscs have quickly become a widely used platform for studies of membrane proteins. However, the molecular self-assembly process that ultimately should place a membrane protein inside a nanodisc is not well understood. This poses a challenge for a successful high-yield reconstitution of general membrane proteins into nanodiscs. In the present work, the self-assembly process of POPC-MSP1D1 nanodiscs was carefully investigated by systematically modulating the reconstitution parameters and probing the effect with a small-angle X-ray scattering analysis of the resulting nanodiscs. First, it was established that nanodiscs prepared using the standard protocol followed a narrow but significant size distribution and that the formed nanodiscs were stable at room temperature over a time range of about a week. Systematic variation of the POPC/MSP1D1 stoichiometry of the reconstitution mixture showed that a ratio of less than 75:1 resulted in lipid-poor nanodiscs, whereas ratios of 75:1 and larger resulted in nanodiscs with constant POPC/MSP1D1 ratios of 60:1. A central step in the self-assembly process consists in adding detergent-absorbing resin beads to the reconstitution mixture to remove the reconstitution detergent. Surprisingly, it was found that this step did not play a significant role for the shape and stoichiometry of the formed nanodiscs. Finally, the effect of the choice of detergent used in the reconstitution process was investigated. It was found that detergent type is a central determining factor for the shape and stoichiometry of the formed nanodiscs. A significantly increasing POPC/MSP1D1 stoichiometry of the formed nanodiscs was observed as the reconstitution detergent type is changed in the order: Tween80, DDM, Triton X-100, OG, CHAPS, Tween20, and Cholate, but with no simple correlation to the characteristics of the detergent. This emphasizes that the detergents optimal for solution storage and crystallization of membrane proteins, in particular DDM, should not be used alone for nanodisc reconstitution. However, our data also show that when applying mixtures of the reconstitution detergent cholate and the storage detergents DDM or OG, cholate dominates the reconstitution process and nanodiscs are obtained, which resemble those formed without storage detergents.
Collapse
Affiliation(s)
- Nicholas Skar-Gislinge
- Structural Biophysics, Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Nicolai Tidemand Johansen
- Structural Biophysics, Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Rasmus Høiberg-Nielsen
- Structural Biophysics, Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| |
Collapse
|
30
|
Yeh V, Lee TY, Chen CW, Kuo PC, Shiue J, Chu LK, Yu TY. Highly Efficient Transfer of 7TM Membrane Protein from Native Membrane to Covalently Circularized Nanodisc. Sci Rep 2018; 8:13501. [PMID: 30201976 PMCID: PMC6131177 DOI: 10.1038/s41598-018-31925-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Incorporating membrane proteins into membrane mimicking systems is an essential process for biophysical studies and structure determination. Monodisperse lipid nanodiscs have been found to be a suitable tool, as they provide a near-native lipid bilayer environment. Recently, a covalently circularized nanodisc (cND) assembled with a membrane scaffold protein (MSP) in circular form, instead of conventional linear form, has emerged. Covalently circularized nanodiscs have been shown to have improved stability, however the optimal strategies for the incorporation of membrane proteins, as well as the physicochemical properties of the membrane protein embedded in the cND, have not been studied. Bacteriorhodopsin (bR) is a seven-transmembrane helix (7TM) membrane protein, and it forms a two dimensional crystal consisting of trimeric bR on the purple membrane of halophilic archea. Here it is reported that the bR trimer in its active form can be directly incorporated into a cND from its native purple membrane. Furthermore, the assembly conditions of the native purple membrane nanodisc (PMND) were optimized to achieve homogeneity and high yield using a high sodium chloride concentration. Additionally, the native PMND was demonstrated to have the ability to assemble over a range of different pHs, suggesting flexibility in the preparation conditions. The native PMND was then found to not only preserve the trimeric structure of bR and most of the native lipids in the PM, but also maintained the photocycle function of bR. This suggests a promising potential for assembling a cND with a 7TM membrane protein, extracted directly from its native membrane environment, while preserving the protein conformation and lipid composition.
Collapse
Affiliation(s)
- Vivien Yeh
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Tsung-Yen Lee
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chung-Wen Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Pai-Chia Kuo
- Institute of Physics, Academia Sinica, No.128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Jessie Shiue
- Institute of Physics, Academia Sinica, No.128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan.
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
31
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
32
|
Carlson ML, Young JW, Zhao Z, Fabre L, Jun D, Li J, Li J, Dhupar HS, Wason I, Mills AT, Beatty JT, Klassen JS, Rouiller I, Duong F. The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. eLife 2018; 7:34085. [PMID: 30109849 PMCID: PMC6093710 DOI: 10.7554/elife.34085] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/05/2018] [Indexed: 12/15/2022] Open
Abstract
Membrane proteins are difficult to work with due to their insolubility in aqueous solution and quite often their poor stability in detergent micelles. Here, we present the peptidisc for their facile capture into water-soluble particles. Unlike the nanodisc, which requires scaffold proteins of different lengths and precise amounts of matching lipids, reconstitution of detergent solubilized proteins in peptidisc only requires a short amphipathic bi-helical peptide (NSPr) and no extra lipids. Multiple copies of the peptide wrap around to shield the membrane-exposed part of the target protein. We demonstrate the effectiveness of this ‘one size fits all’ method using five different membrane protein assemblies (MalFGK2, FhuA, SecYEG, OmpF, BRC) during ‘on-column’, ‘in-gel’, and ‘on-bead’ reconstitution embedded within the membrane protein purification protocol. The peptidisc method is rapid and cost-effective, and it may emerge as a universal tool for high-throughput stabilization of membrane proteins to advance modern biological studies. Surrounding every living cell is a biological membrane that is largely impermeable to water-soluble molecules. This hydrophobic (or “water-hating”) barrier preserves the contents of the cell and also regulates how the cell interacts with its environment. This latter function is critical and relies on a class of proteins that are embedded within the membrane and are also hydrophobic. The hydrophobic nature of membrane proteins is however inconvenient for biochemical studies which usually take place in water-based solutions. Therefore, membrane proteins are under-represented in biological research compared to the water-soluble ones, even though roughly one quarter of a cell’s proteins are membrane proteins. Researchers have developed a few tricks to keep membrane proteins soluble after they have been extracted from the membrane. An old but popular technique makes use of detergents, which are chemicals with opposing hydrophobic and hydrophilic properties (hydrophilic literally means “water-loving”). However, even mild detergents can damage membrane proteins and will sometimes lead to experimental artifacts. More recent tricks to stabilize membrane proteins without detergents have been described but remain laborious, costly or difficult to perform. To overcome these limitations, Carlson et al. developed a simple method to stabilize membrane proteins without detergent. Called the “peptidisc”, the method uses multiple copies of a unique peptide – a short sequence of the building blocks of protein – that had been redesigned to have optimal hydrophobic and hydrophilic properties. The idea was that the peptides would wrap around the hydrophobic parts of the membrane protein, and shield them from the watery solution. Indeed, when Carlson et al. mixed this peptide with five different membrane proteins from bacteria, all were perfectly soluble and functional without detergent. The ideal ratio of peptide needed to form a peptidisc around each membrane protein was reached automatically, without having to test many different conditions. This indicates that the peptidisc acts like a “one size fits all” scaffold. The peptidisc is a new tool that will allow more researchers, including those who are not expert biochemists, to study membrane proteins. This will yield a better understanding of the structure of a cell’s membrane and how it interacts with the environment. Since the approach is both simple and easy to apply, more membrane proteins can now also be included in high-throughput searches for potential new drugs for various medical conditions.
Collapse
Affiliation(s)
- Michael Luke Carlson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - John William Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Lucien Fabre
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Daniel Jun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Jianing Li
- Glycomics Centre and Department of Chemistry, University of Alberta, Alberta, Canada
| | - Jun Li
- Glycomics Centre and Department of Chemistry, University of Alberta, Alberta, Canada
| | - Harveer Singh Dhupar
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Irvin Wason
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Allan T Mills
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - John S Klassen
- Glycomics Centre and Department of Chemistry, University of Alberta, Alberta, Canada
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Franck Duong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Ogren JI, Tong AL, Gordon SC, Chenu A, Lu Y, Blankenship RE, Cao J, Schlau-Cohen GS. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. Chem Sci 2018; 9:3095-3104. [PMID: 29732092 PMCID: PMC5914429 DOI: 10.1039/c7sc04814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to tilting of the peripheral bacteriochlorophyll in the B800 band. These results highlight the importance of well-defined systems with near-native membrane conditions for physiologically-relevant measurements.
Collapse
Affiliation(s)
- John I Ogren
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Ashley L Tong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Samuel C Gordon
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Aurélia Chenu
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Yue Lu
- Department of Biology and Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , USA
| | - Robert E Blankenship
- Department of Biology and Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , USA
| | - Jianshu Cao
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Gabriela S Schlau-Cohen
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| |
Collapse
|
34
|
McLean MA, Gregory MC, Sligar SG. Nanodiscs: A Controlled Bilayer Surface for the Study of Membrane Proteins. Annu Rev Biophys 2018; 47:107-124. [PMID: 29494254 DOI: 10.1146/annurev-biophys-070816-033620] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of membrane proteins and receptors presents many challenges to researchers wishing to perform biophysical measurements to determine the structure, function, and mechanism of action of such components. In most cases, to be fully functional, proteins and receptors require the presence of a native phospholipid bilayer. In addition, many complex multiprotein assemblies involved in cellular communication require an integral membrane protein as well as a membrane surface for assembly and information transfer to soluble partners in a signaling cascade. Incorporation of membrane proteins into Nanodiscs renders the target soluble and provides a native bilayer environment with precisely controlled composition of lipids, cholesterol, and other components. Likewise, Nanodiscs provide a surface of defined area useful in revealing lipid specificity and affinities for the assembly of signaling complexes. In this review, we highlight several biophysical techniques made possible through the use of Nanodiscs.
Collapse
Affiliation(s)
- Mark A McLean
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| | - Michael C Gregory
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA; , ,
| |
Collapse
|
35
|
Yasuhara K, Arakida J, Ravula T, Ramadugu SK, Sahoo B, Kikuchi JI, Ramamoorthy A. Spontaneous Lipid Nanodisc Fomation by Amphiphilic Polymethacrylate Copolymers. J Am Chem Soc 2017; 139:18657-18663. [PMID: 29171274 DOI: 10.1021/jacs.7b10591] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing interest in the use of lipid bilayer nanodiscs for various biochemical and biomedical applications. Among the different types of nanodiscs, the unique features of synthetic polymer-based nanodiscs have attracted additional interest. A styrene-maleic acid (SMA) copolymer demonstrated to form lipid nanodiscs has been used for structural biology related studies on membrane proteins. However, the application of SMA polymer based lipid nanodiscs is limited because of the strong absorption of the aromatic group interfering with various experimental measurements. Thus, there is considerable interest in the development of other molecular frameworks for the formation of polymer-based lipid nanodiscs. In this study, we report the first synthesis and characterization of a library of polymethacrylate random copolymers as alternatives to SMA polymer. In addition, we experimentally demonstrate the ability of these polymers to form lipid bilayer nanodiscs through the fragmentation of lipid vesicles by means of light scattering, electron microscopy, differential scanning calorimetry, and solution and solid-state NMR experiments. We further demonstrate a unique application of the newly developed polymer for kinetics and structural characterization of the aggregation of human islet amyloid polypeptide (also known as amylin) within the lipid bilayer of the polymer nanodiscs using thioflavin-T-based fluorescence and circular dichroism experiments. Our results demonstrate that the reported new styrene-free polymers can be used in high-throughput biophysical experiments. Therefore, we expect that the new polymer nanodiscs will be valuable in the structural studies of amyloid proteins and membrane proteins by various biophysical techniques.
Collapse
Affiliation(s)
- Kazuma Yasuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama-cho, Ikoma, Nara 6300192, Japan
| | - Jin Arakida
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama-cho, Ikoma, Nara 6300192, Japan
| | - Thirupathi Ravula
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Sudheer Kumar Ramadugu
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Bikash Sahoo
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama-cho, Ikoma, Nara 6300192, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
36
|
The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola. Sci Rep 2017; 7:13260. [PMID: 29038532 PMCID: PMC5643300 DOI: 10.1038/s41598-017-13550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
The major outer sheath protein (MOSP) is a prominent constituent of the cell envelope of Treponema denticola (TDE) and one of its principal virulence determinants. Bioinformatics predicts that MOSP consists of N- and C-terminal domains, MOSPN and MOSPC. Biophysical analysis of constructs refolded in vitro demonstrated that MOSPC, previously shown to possess porin activity, forms amphiphilic trimers, while MOSPN forms an extended hydrophilic monomer. In TDE and E. coli expressing MOSP with a PelB signal sequence (PelB-MOSP), MOSPC is OM-embedded and surface-exposed, while MOSPN resides in the periplasm. Immunofluorescence assay, surface proteolysis, and novel cell fractionation schemes revealed that MOSP in TDE exists as outer membrane (OM) and periplasmic trimeric conformers; PelB-MOSP, in contrast, formed only OM-MOSP trimers. Although both conformers form hetero-oligomeric complexes in TDE, only OM-MOSP associates with dentilisin. Mass spectrometry (MS) indicated that OM-MOSP interacts with proteins in addition to dentilisin, most notably, oligopeptide-binding proteins (OBPs) and the β-barrel of BamA. MS also identified candidate partners for periplasmic MOSP, including TDE1658, a spirochete-specific SurA/PrsA ortholog. Collectively, our data suggest that MOSP destined for the TDE OM follows the canonical BAM pathway, while formation of a stable periplasmic conformer involves an export-related, folding pathway not present in E. coli.
Collapse
|
37
|
Faas R, Pohle A, Moß K, Henkel M, Hausmann R. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins. ACTA ACUST UNITED AC 2017; 16:1-4. [PMID: 28948158 PMCID: PMC5602816 DOI: 10.1016/j.btre.2017.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/21/2017] [Accepted: 08/28/2017] [Indexed: 10/29/2022]
Abstract
Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.
Collapse
Affiliation(s)
- Ramona Faas
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Annelie Pohle
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Karin Moß
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
38
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
39
|
Ravula T, Ramadugu SK, Di Mauro G, Ramamoorthy A. Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs. Angew Chem Int Ed Engl 2017; 56:11466-11470. [PMID: 28714233 DOI: 10.1002/anie.201705569] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 11/08/2022]
Abstract
Polymer-based nanodiscs are valuable tools in biomedical research that can offer a detergent-free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6 kDa SMA-based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymer-based nanodiscs are characterized by light scattering, NMR, FT-IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to sub-micrometer diameter, can be produced by varying the lipid-to-polymer ratio. The small-size nanodiscs (up to ca. 30 nm diameter) can be used for solution NMR spectroscopy studies whereas the magnetic-alignment of macro-nanodiscs (diameter of > ca. 40 nm) can be exploited for solid-state NMR studies on membrane proteins.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Sudheer Kumar Ramadugu
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Giacomo Di Mauro
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
40
|
Ravula T, Ramadugu SK, Di Mauro G, Ramamoorthy A. Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705569] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Sudheer Kumar Ramadugu
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Giacomo Di Mauro
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry; The University of Michigan; Ann Arbor MI 48109-1055 USA
| |
Collapse
|
41
|
He W, Felderman M, Evans AC, Geng J, Homan D, Bourguet F, Fischer NO, Li Y, Lam KS, Noy A, Xing L, Cheng RH, Rasley A, Blanchette CD, Kamrud K, Wang N, Gouvis H, Peterson TC, Hubby B, Coleman MA. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J Biol Chem 2017; 292:15121-15132. [PMID: 28739800 DOI: 10.1074/jbc.m117.784561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.
Collapse
Affiliation(s)
- Wei He
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | - Angela C Evans
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Jia Geng
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - David Homan
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Feliza Bourguet
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Nicholas O Fischer
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Yuanpei Li
- the Department of Biochemistry and Molecular Medicine and
| | - Kit S Lam
- the Department of Biochemistry and Molecular Medicine and
| | - Aleksandr Noy
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - Li Xing
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - R Holland Cheng
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - Amy Rasley
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Craig D Blanchette
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Kurt Kamrud
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Nathaniel Wang
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Heather Gouvis
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | | | - Bolyn Hubby
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Matthew A Coleman
- From the Lawrence Livermore National Laboratory, Livermore, California 94550, .,Radiation Oncology, School of Medicine, University of California Davis, Sacramento, California 95817, and
| |
Collapse
|
42
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Efremov RG, Gatsogiannis C, Raunser S. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM. Methods Enzymol 2017; 594:1-30. [DOI: 10.1016/bs.mie.2017.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem 2016; 397:1335-1354. [DOI: 10.1515/hsz-2016-0224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Abstract
The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.
Collapse
|
45
|
Samanta D, Widom J, Borbat PP, Freed JH, Crane BR. Bacterial Energy Sensor Aer Modulates the Activity of the Chemotaxis Kinase CheA Based on the Redox State of the Flavin Cofactor. J Biol Chem 2016; 291:25809-25814. [PMID: 27803157 DOI: 10.1074/jbc.c116.757492] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Flagellated bacteria modulate their swimming behavior in response to environmental cues through the CheA/CheY signaling pathway. In addition to responding to external chemicals, bacteria also monitor internal conditions that reflect the availability of oxygen, light, and reducing equivalents, in a process termed "energy taxis." In Escherichia coli, the transmembrane receptor Aer is the primary energy sensor for motility. Genetic and physiological data suggest that Aer monitors the electron transport chain through the redox state of its FAD cofactor. However, direct biochemical data correlating FAD redox chemistry with CheA kinase activity have been lacking. Here, we test this hypothesis via functional reconstitution of Aer into nanodiscs. As purified, Aer contains fully oxidized FAD, which can be chemically reduced to the anionic semiquinone (ASQ). Oxidized Aer activates CheA, whereas ASQ Aer reversibly inhibits CheA. Under these conditions, Aer cannot be further reduced to the hydroquinone, in contrast to the proposed Aer signaling model. Pulse ESR spectroscopy of the ASQ corroborates a potential mechanism for signaling in that the resulting distance between the two flavin-binding PAS (Per-Arnt-Sim) domains implies that they tightly sandwich the signal-transducing HAMP domain in the kinase-off state. Aer appears to follow oligomerization patterns observed for related chemoreceptors, as higher loading of Aer dimers into nanodiscs increases kinase activity. These results provide a new methodological platform to study Aer function along with new mechanistic details into its signal transduction process.
Collapse
Affiliation(s)
- Dipanjan Samanta
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and.,the National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York 14853
| | - Joanne Widom
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| | - Peter P Borbat
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and.,the National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York 14853
| | - Jack H Freed
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and.,the National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York 14853
| | - Brian R Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| |
Collapse
|
46
|
Tuning the Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs. Biophys J 2016; 109:1899-906. [PMID: 26536266 DOI: 10.1016/j.bpj.2015.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/19/2015] [Accepted: 09/11/2015] [Indexed: 11/22/2022] Open
Abstract
Monodisperse lipid nanodiscs are particularly suitable for characterizing membrane protein in near-native environment. To study the lipid-composition dependence of photocycle kinetics of bacteriorhodopsin (bR), transient absorption spectroscopy was utilized to monitor the evolution of the photocycle intermediates of bR reconstituted in nanodiscs composed of different ratios of the zwitterionic lipid (DMPC, dimyristoyl phosphatidylcholine; DOPC, dioleoyl phosphatidylcholine) to the negatively charged lipid (DOPG, dioleoyl phosphatidylglycerol; DMPG, dimyristoyl phosphatidylglycerol). The characterization of ion-exchange chromatography showed that the negative surface charge of nanodiscs increased as the content of DOPG or DMPG was increased. The steady-state absorption contours of the light-adapted monomeric bR in nanodiscs composed of different lipid ratios exhibited highly similar absorption features of the retinal moiety at 560 nm, referring to the conservation of the tertiary structure of bR in nanodiscs of different lipid compositions. In addition, transient absorption contours showed that the photocycle kinetics of bR was significantly retarded and the transient populations of intermediates N and O were decreased as the content of DMPG or DOPG was reduced. This observation could be attributed to the negatively charged lipid heads of DMPG and DOPG, exhibiting similar proton relay capability as the native phosphatidylglycerol (PG) analog lipids in the purple membrane. In this work, we not only demonstrated the usefulness of nanodiscs as a membrane-mimicking system, but also showed that the surrounding lipids play a crucial role in altering the biological functions, e.g., the ion translocation kinetics of the transmembrane proteins.
Collapse
|
47
|
Artificial membranes for membrane protein purification, functionality and structure studies. Biochem Soc Trans 2016; 44:877-82. [DOI: 10.1042/bst20160054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 11/17/2022]
Abstract
Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method.
Collapse
|
48
|
Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 2016; 23:481-6. [PMID: 27273631 DOI: 10.1038/nsmb.3195] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Membrane proteins have long presented a challenge to biochemical and functional studies. In the absence of a bilayer environment, individual proteins and critical macromolecular complexes may be insoluble and may display altered or absent activities. Nanodisc technology provides important advantages for the isolation, purification, structural resolution and functional characterization of membrane proteins. In addition, the ability to precisely control the nanodisc composition provides a nanoscale membrane surface for investigating molecular recognition events.
Collapse
|
49
|
Zeno WF, Rystov A, Sasaki DY, Risbud SH, Longo ML. Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4688-4697. [PMID: 27096947 PMCID: PMC5519306 DOI: 10.1021/acs.langmuir.6b00831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.
Collapse
Affiliation(s)
| | | | - Darryl Y Sasaki
- Sandia National Laboratories , P.O. Box 969, Livermore, California 94551, United States
| | | | | |
Collapse
|
50
|
Bajaj R, Bruce KE, Davidson AL, Rued BE, Stauffacher CV, Winkler ME. Biochemical characterization of essential cell division proteins FtsX and FtsE that mediate peptidoglycan hydrolysis by PcsB in Streptococcus pneumoniae. Microbiologyopen 2016; 5:738-752. [PMID: 27167971 PMCID: PMC5061712 DOI: 10.1002/mbo3.366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The FtsEX:PcsB complex forms a molecular machine that carries out peptidoglycan (PG) hydrolysis during normal cell division of the major respiratory pathogenic bacterium, Streptococcus pneumoniae (pneumococcus). FtsX is an integral membrane protein and FtsE is a cytoplasmic ATPase that together structurally resemble ABC transporters. Instead of transport, FtsEX transduces signals from the cell division apparatus to stimulate PG hydrolysis by PcsB, which interacts with extracellular domains of FtsX. Structural studies of PcsB and one extracellular domain of FtsX have recently appeared, but little is known about the biochemical properties of the FtsE ATPase or the intact FtsX transducer protein. We report here purifications and characterizations of tagged FtsX and FtsE proteins. Pneumococcal FtsX‐GFP‐His and FtsX‐His could be overexpressed in Escherichia coli without toxicity, and FtsE‐His remained soluble during purification. FtsX‐His dimerizes in detergent micelles and when reconstituted in phospholipid nanodiscs. FtsE‐His binds an ATP analog with an affinity comparable to that of ATPase subunits of ABC transporters, and FtsE‐His preparations have a low, detectable ATPase activity. However, attempts to detect complexes of purified FtsX‐His, FtsE‐His, and PcsB‐His or coexpressed tagged FtsX and FtsE were not successful with the constructs and conditions tested so far. In working with nanodiscs, we found that PcsB‐His has an affinity for charged phospholipids, mediated partly by interactions with its coiled‐coil domain. Together, these findings represent first steps toward reconstituting the FtsEX:PcsB complex biochemically and provide information that may be relevant to the assembly of the complex on the surface of pneumococcal cells.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Amy L Davidson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Britta E Rued
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405.
| |
Collapse
|